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Abstract. Problem Definition: Shared decision-making (SDM) processes, in which

doctors and patients work together to choose among treatment options, have gained

increasing support from clinicians and governments. Despite the recognized benefits and

limitations of these processes, clear guidelines on when and how to implement them are

lacking.

Methodology/Results: We develop a stylized analytical model to derive a set of results

characterizing when and how to personalize the treatment decision-making process

between doctors and patients, taking into account the bounded rationality of doctors and

patients. For example, we find that personalizing treatment to account for individual

patient preferences is beneficial when treatments have a large expected medical differ-

ence across patient types relative to the degree of patient decision error. We also find

that the benefits of personalizing treatment to account for individual medical prognoses

depends on the degree of patient decision participation. With patient participation, prog-

nosis personalization can even be detrimental when patients strongly prefer one treat-

ment over the other.

Managerial implications: Challenging common medical belief that advocates for uni-

form increases in personalization, we show that limitations in medical prognoses accu-

racy and human cognition imply the existence of trade-offs between personalization

and standardization on multiple dimensions within doctor-patient SDM processes. Our

results prescribe whether and how to target personalization efforts based on environ-

mental factors, doctor, and patient characteristics.

Key words: shared decision-making, treatment personalization, standardization,

bounded rationality

1. Introduction

Healthcare systems are increasingly moving toward patient-centered care, which emphasizes tailor-

ing treatment plans to individual patient needs and preferences through personalization (Breen et al.

2010). This approach involves personalizing treatments based on two key dimensions: medical prog-

noses and patient preferences. The former refers to informing patients about their personalized med-
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ical prognosis regarding risks and outcome predictions, while the latter refers to integrating patients’

lifestyle and risk preferences into treatment decisions by actively involving them in the medical

decision-making process (Rogowski et al. 2015). This approach is often referred to as shared decision-

making (SDM) in the healthcare literature. For example, Coulter and Collins (2011) define SDM as

“a process in which clinicians and patients work together to select tests, treatments, management or

support packages, based on clinical evidence and the patient’s informed preferences”. This collabo-

rative model ensures that treatment decisions align with each patient’s unique needs and preferences

(Daack-Hirsch and Campbell 2014, Bagshaw et al. 2021).

In contrast, standardized medicine (SM) refers to the systematic application of evidence-based pro-

tocols and guidelines to ensure uniformity in healthcare delivery, adopting a one-size-fits-all approach.

These protocols, typically developed through randomized clinical trials (RCTs), focus on the “aver-

age patient” rather than the individual patient (Romana 2006, de Leon 2012). Proponents of SDM

criticize SM for neglecting the individual patient, calling it a “doctor-centered” approach (Sweeney

et al. 1998) that overemphasizes the disease and neglects the subjective needs and desires of the

patient (Haines et al. 2019, Spatz et al. 2017, JM 2018). Such criticisms have driven initiatives like the

United Kingdom’s National Health Service (NHS)’s motto, “no decision about me without me,” and

the acknowledgement that SDM is appropriate in most healthcare situations that involve preference-

sensitive decisions (NHS England and NHS Improvement 2019). The U.S. Patient Protection and

Affordable Care Act similarly promotes SDM (ACA 2010). In 2011, 58 experts from 18 countries

published the Salzburg Statement on Shared Decision Making, calling for clinicians and patients to

use SDM (Salzburg Global Seminar 2011).

Although many experts advocate SDM, doctors often cite challenges in its implementation and

are sometimes reluctant to use it (Légaré and Witteman 2013). One major barrier is patients’ lack of

information literacy. For example, a medical oncologist observed, “Sometimes I feel like if we lay all

the options out there sometimes it confuses them and they are not really making a good decision in

the end” (Zeuner et al. 2015). Another noted, “the main thing that stands in my way [of using SDM] is

the patient’s inability to understand risk.” (Schoenfeld et al. 2019). Additionally, doctors often report

confusion or uncertainty about when SDM should be applied (Baghus et al. 2022, van der Horst et al.

2022, Barker et al. 2019). The use of SDM varies greatly among doctors, even within the same hos-

pital network. While one doctor might routinely involve patients in every decision, stating, “Clinical

practice is about patient education and shared decision making,” another might base decisions solely

on evidence, saying, “I have a manual that I rely on” (Alameddine et al. 2020). Moreover, factors such



: Designing Shared Decision-Making under Bounded Rationality
Article submitted to 3

as experience, confidence, and awareness of their limitations also influence how frequently SDM is

implemented (Simmons et al. 2016, Schoenfeld et al. 2018, 2019, Waddell et al. 2021).

In this paper, we develop a stylized analytical model to derive guidelines for when and how systems

should design doctor-patient shared decision making processes. We explicitly incorporate both the

potential benefits claimed by its advocates and the real-world challenges that hinder its use. These

challenges include the cognitive limitations and behavioral tendencies experienced by both doctors

and patients. Specifically, we ask the following research questions: (1) How do patient cognitive limi-

tations affect the optimal personalized medical prognoses communication? (2) Under what conditions

should systems have doctors personalize medical diagnoses?, and (3) Under what conditions should

systems personalize treatment decisions based on patient preferences?

To address these questions, we consider a doctor-patient decision process with two possible treat-

ments. We develop a stylized model in which patients differ in both their medical prognoses under

each treatment and their preferences for these medical prognoses. Doctors have private information

about patients’ medical prognoses, and patients have private information about their preferences about

medical prognoses. Our model incorporates the concept of bounded rationality, acknowledging that

doctors have noisy signals about patient prognoses and that patients may make errors when they try

to apply their preferences to the prognoses that they are given.

No patient participation Patient participation

Standardized medical prognoses Standardized Medicine (SM) Patient Choice (PC)

Personalized medical prognoses Personalized Medicine (PM) Coproduction (CP)
Table 1 Prognosis-to-treatment decision-making processes.

We use our model to compare the performances of the four types of decision-making processes

described in Table 1. These processes vary based on the degree of personalization across two key

dimensions. In medical prognosis personalization, the doctor provides patients with tailored informa-

tion about their specific risks and predicted outcomes. In patient participation, the doctor integrates

patients’ personal lifestyles, values, and risk preferences into medical decision-making by allowing

them to actively participate in the decision-making process.

We now outline the structure of the paper and preview our main results. We review the related

literature in §2 and introduce our model in §3. In §4, we establish how doctors should respond to

cognitive limitations under PM and CP. When providing personalized medical prognosis information,

doctors combine prior knowledge with private, yet potentially noisy, signals of patient prognoses. A

key performance issue here is whether doctors have the metacognition to make adjustments to account
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for their noisy signals (i.e., by using Bayesian weights). Specifically, under PM, we find that doctors

should place Bayesian weights on the priors to account for their random errors accurately. However,

with patient errors introduced under CP, Bayesian weights are no longer optimal. In these cases,

depending on the strength of the patient’s treatment preferences, doctors should adjust the weight on

priors—either increasing or decreasing it relative to the Bayesian weight.

In §5, we identify when clinical guidelines for SDM should advise doctors to personalize medical

prognoses. Without patient participation, the decision to switch from SM to PM depends heavily on

how well calibrated doctors in accounting for their noisy prognoses signals (i.e., how Bayesian they

are). Specifically, we find that switching from SM to PM is always beneficial for Bayesian doctors or

those who rely less (relative to Bayesian doctors) on noisy private information. However, it could be

detrimental for doctors who weigh this private information more heavily than their Bayesian coun-

terparts. On the other hand, with patient participation, the decision to switch from PC to CP depends

on the strength of patient preferences, rather than whether the doctor is Bayesian. More specifically,

when patients have weak preferences between treatments, we show that it is always beneficial to

switch from PC to CP. However, when patients have strong preferences for a particular treatment,

switching from PC to CP could be detrimental. Interestingly, in such cases, prognosis personalization

may lead to a utility loss even for Bayesian doctors. This is because when boundedly rational patients

with strong preferences are involved in decision-making, Bayesian weights are no longer optimal. In

particular, Bayesian doctors “overweight” the signal relative to the optimal weight, which worsens the

performance of prognosis personalization.

In §6, we establish when clinical guidelines for SDM should advise doctors to allow patient par-

ticipation. We show that it is beneficial to allow patient participation (i.e., switch from SM to PC, or

from PM to CP) when the mean difference in treatment effects between heterogeneous patient types

is sufficiently large relative to patient error.

In §7, we synthesize the insights from the previous sections to provide guidance on the optimal

design of prognosis-to-treatment decision-making processes, identifying when SM, PM, PC, or CP

is superior. The decision tree in Figure 2 in §7 summarizes these findings. We conclude in §8 with a

discussion of managerial insights, limitations, and directions for future research.

2. Related Literature

Patient Preference and Prognosis Personalization in the Medical Literature: The medical literature

largely supports personalizing treatment based on both medical prognoses and patient preferences

(Braddock III et al. 1999, Oshima Lee and Emanuel 2013, Veroff et al. 2013, Daack-Hirsch and
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Campbell 2014, Shay and Lafata 2015). However, some studies cite patients’ lack of health literacy as

a significant barrier to effective SDM and advise caution when involving patients with low health lit-

eracy in SDM (McCaffery et al. 2010, Shippee et al. 2015, Palumbo and Manna 2018). Unfortunately,

there are no clear guidelines on how to operationalize SDM—specifically, on when to personalize

treatments to account for medical prognoses and/or patient preferences (van Veenendaal et al. 2018,

Barker et al. 2019, Baghus et al. 2022, van der Horst et al. 2022), leaving such decisions highly

dependent on clinician judgment.

While the existing literature primarily focuses on a dichotomy between standardized medicine (no

personalization) and coproduction (full personalization), this paper offers a more nuanced perspec-

tive. In particular, in addition to standardized medicine and coproduction, we explore intermediate

processes—personalized medicine and patient choice—that allow for personalizing treatment based

on either medical prognoses or patient preferences. In doing so, we contribute to this stream of

literature by providing guidelines for when full personalization (coproduction), no personalization

(standardized medicine), or partial personalization (personalized medicine or patient choice) is most

appropriate.

Finally, while the medical literature frequently cites patients’ lack of health literacy as a barrier to

SDM, it often overlooks doctors’ limitations (McCaffery et al. 2010, Shippee et al. 2015, Palumbo

and Manna 2018). A key contribution of this paper is to consider not only patient errors but also doc-

tor errors when developing guidelines for personalizing treatment to account for individual medical

prognoses and patient preferences.

Patient Preference and Prognosis Personalization in the Healthcare Operations Management

Literature: Patient participation in care decisions and the incorporation of patient preferences have

been modeled in the healthcare operations management literature. For example, Ahn and Hornberger

(1996) consider incorporating patient preferences for health states into the allocation process for

cadaveric kidney transplants, while Batun et al. (2018) consider incorporating patient preferences

for risk into liver acceptance decisions for patients with end-stage liver disease. Ayvaci et al. (2018)

develop a modeling framework that incorporates patient risk preferences into diagnostic decisions

following mammography screening. In optimizing decisions about whether and when to perform

biopsies for patients on active surveillance for prostate cancer, Li et al. (2023) allow the weighting of

reward criteria to vary according to patient preferences.

In addition to treatment personalization based on patient preferences, a growing body of research

focuses on tailoring treatment plans to individual patient prognoses and risk profiles. For example,

Ibrahim et al. (2016) design a partially observable Markov decision process (POMDP) to customize
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anticoagulation therapy based on the patient’s individual response and sensitivity to treatment, with

the goal of minimizing stroke risk. Zargoush et al. (2018) determine the optimal sequence of antihy-

pertensive treatments by considering individual risk factors such as age, gender, and smoking habits.

Chen et al. (2021) introduce a decision support system to customize radiation treatment plans based

on predicted individual outcomes. Hajjar and Alagoz (2023) develop a framework for personalized

screening decisions that take into account patients’ comorbidities such as diabetes and hypertension.

All of these papers assume that decision-makers are perfectly rational, whereas we allow for doctors

and patients to be boundedly rational.

Co-production in the Service Operations Management Literature: Co-production in service sys-

tems refers to customers playing an active role in the creation of the final output. This concept has

received considerable attention in the service operations management literature (Fuchs et al. 1968,

Sampson and Froehle 2006), with many studies analyzing its implications using analytical models.

For example, Xue and Field (2008) consider a co-production process with information stickiness in

consulting services, focusing on work allocation between consultant and client and pricing decisions.

Roels (2014) identifies the optimal design of a co-production process between a customer and a ser-

vice provider by investigating how much interaction is needed. They find that as a task becomes less

standardized, it is optimal to increase the interaction between the customer and the service provider.

Daw et al. (2020) develop new stochastic models for service co-production in contact centers by

incorporating dynamic factors that depend on the mechanics of the interaction, such as the number of

words written by each party. Some studies have examined the optimal contract design for service co-

production. For example, Rahmani et al. (2017) consider a knowledge-intensive project that requires

the involvement of both the client and the vendor. They provide several insights into the optimal

contract design when the client cannot monitor and verify the vendor’s efforts.

Bounded Rationality in Behavioral Operations Management and Judgment and Decision Mak-

ing: Several papers in behavioral operations management consider the role of bounded rationality

in the design of operational systems (Simon 1957). For example, researchers have examined how

bounded rationality impacts the optimal design of supply chain contracts (Ho and Zhang 2008, Kalka-

nci et al. 2011, Su 2008), queues (Huang et al. 2013), auctions (Davis et al. 2014) and forecasting

processes (Kremer et al. 2016, Tong and Feiler 2017, Ibrahim et al. 2021) in the presence of human

random error. Similarly, this paper examines the role of random errors of doctors and patients on the

design of SDM.
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3. Model Setting

In this section, we introduce our modeling framework. In §3.1, we describe the utility functions of the

patients. In §3.2, we present the four different prognosis-to-treatment decision-making processes we

consider in the paper. In §3.3, we model the cognitive limitations of both doctors and patients.

3.1. Patients’ Utility Functions

A doctor and a patient need to decide between two treatments: A and B. These treatments differ in

their risks and benefits along two key dimensions, x and y. We consider two types of patients, called

type-1 and type-2, who differ in the weight they place on each dimension. The utility of treatment t

for a type-i patient is given by:

Uit =wiXt + (1−wi)Yt. (1)

Here, Xt and Yt represent the medical responses of patients to treatment t, indicating the true medical

prognosis along the x and y dimensions, respectively. The parameter wi ∈ [0,1] captures the impor-

tance of the x dimension for a type-i patient.

We make the following distributional assumptions for analytical purposes: Xt and Yt are normally

distributed with means µXt and µY t, and variances σ2
Xt and σ2

Y t, respectively.1 For algebraic conve-

nience, we assume that σ2
XA = σ2

XB = σ2
X/2 and σ2

Y A = σ2
Y B = σ2

Y /2, though our results hold without

this condition. An arriving patient is a type-1 patient with probability p and a type-2 patient with

probability 1− p. Hence, the weight on the x dimension for the average patient is

w̄= pw1 + (1− p)w2. (2)

The utility difference between treatments A and B for the average type-1 and type-2 patient are:

∆µ1 =w1(µXA−µXB) + (1−w1)(µY A−µY B), (3)

∆µ2 =w2(µXA−µXB) + (1−w2)(µY A−µY B). (4)

Let |∆µ1| and |∆µ2| measure the absolute difference in utility between treatment A and treatment B

for the average type-1 and type-2 patient, respectively. As these values increase, the average patient’s

utility for a given treatment becomes more distinct. As they approach zero, patients become more

neutral toward the two treatments.

Without loss of generality, we make the following assumptions:

1We will discuss the necessity of assuming a normal distribution for Xt and Yt in Section 3.3.
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• Type-1 patients place a higher weight on the x dimension than type-2 patients, i.e., w1 >w2.

• For the average patient, treatment A is “better” on the x dimension, while treatment B is “better”

on the y dimension, i.e., µXA >µXB and µY A <µY B.

• Treatment A is better for the average type-1 patient, while treatment B is better for the average

type-2 patient, i.e., ∆µ1 > 0 and ∆µ2 < 0.

• Treatment B is better for the overall average patient, i.e., w̄(µXA−µXB)+(1−w̄)(µY A−µY B)< 0.

In general, doctors are considered experts in making medical prognoses, while patients are experts

in their preferences (Ng and Lee 2021, p.4). Therefore, we assume that patients know their type (type-

1 or type-2), but doctors do not. Conversely, we assume that doctors observe the realizations of Xt

and Yt for a given patient, but patients do not. The following two examples help conceptualize this

utility model.

Example 1 Consider two treatment options for lung cancer: radiation (treatment A) and surgical

removal (treatment B). Radiation may offer a lower survival time but is usually easier and less painful.

Let XA and XB denote the ease of treatments A and B, respectively, with µXA − µXB > 0 since

radiation is generally easier. Similarly, let YA and YB represents the natural logarithm of survival

time under treatments A and B, respectively, with µY A−µY B < 0 since surgical removal is generally

associated with longer survival. Lastly, w1 and w2 capture the importance placed on ease of treatment

(relative to survival time) by type-1 and type-2 patients, respectively.

Example 2 Consider two drug options for depression: Venlafaxine (Treatment A) and Mirtazapine

(Treatment B).2 Venlafaxine generally leads to less weight gain than Mirtazapine but is harder to dis-

continue. Here, XA and XB denote the ease of keeping the weight constant, with µXA−µXB > 0. YA

and YB denote the ease of discontinuing the drugs, with µY A−µY B < 0. Finally, w1 and w2 represent

the importance placed on the ease of keeping the weight constant versus ease of discontinuation by

type-1 and type-2 patients, respectively.

3.2. Prognosis-to-Treatment Decision-Making Processes

Under a prognosis-to-treatment decision-making process, given the medical prognoses X̂t = x̂t and

Ŷt = ŷt developed by the doctor, and the patient’s perceived preferences (ŵi), the decision maker—

who may be either the doctor or the patient, depending on the process—solves the following opti-

mization problem to select a treatment for a patient of type-i:

max
t∈{A,B}

Ûit(ŵi, x̂t, ŷt). (5)

2Mayo Clinic’s decision aid for this choice is available at https://depressiondecisionaid.mayoclinic.org/app/depression.
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Here, Ûit(ŵi, x̂t, ŷt) represents the utility of a type-i patient under treatment t, as perceived by the

decision maker. The exact expression of this utility function will be provided below as we introduce

our four prognosis-to-treatment decision-making processes.

• Standardized Medicine (SM): The doctor selects a treatment based on average patient prognoses

and weights without involving patients in the decision-making. Hence, letting ŵi = w̄, x̂t = µXt

and ŷt = µY t in (5), the utility of treatment t perceived by the doctor under SM is equal to:

Ûit(w̄, µXt, µY t) = w̄µXt + (1− w̄)µY t. (6)

Since we assume w̄(µXA−µXB) + (1− w̄)(µY A−µY B)< 0, SM is equivalent to always choosing

treatment B in our model.

• Personalized Medicine (PM): The doctor makes personalized predictions about the prognoses for

each treatment, X̂t = x̂t and Ŷt = ŷt, and decides based on the average patient weights.3 Letting

ŵi = w̄ in (5), the utility of treatment t perceived by the doctor under PM is equal to:

Ûit(w̄, x̂t, ŷt) = w̄x̂t + (1− w̄)ŷt. (7)

• Patient Choice (PC): The doctor provides average prognosis values (µXt and µY t) to the patient;

who then makes a decision based on their preferences (wi). However, while merging their prefer-

ences with the medical prognoses, the patient adds a random error γit due to their misinterpretation

of the information shared by the doctor.4 Letting ŵi = wi, x̂t = µXt and ŷt = µY t in (5), a type-i

patient perceives the utility of treatment t under PC to be

Ûit(wi, µXt, µY t) =wiµXt + (1−wi)µY t + γit. (8)

• Coproduction (CP): Both the doctor and the patient participate in decision-making. The doctor

provides personalized medical prognosis predictions, X̂t = x̂t and Ŷt = ŷt, and the patient decides

based on their preferences (wi).3 Similar to PC, the patient under CP adds a random error γit while

deciding between the two treatments. Letting ŵi =wi in (5), a type-i patient perceives the utility of

treatment t under CP to be:

Ûit(wi, x̂t, ŷt) =wix̂t + (1−wi)ŷt + γit. (9)

3 The personalized medical prognosis predictions, X̂t and Ŷt, will be introduced precisely in (11) in Section 3.3.
4 The details about patient random error term γit will be introduced precisely in Section 3.3.
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The optimization problem in (5) specifies which treatment is selected for a given patient under a

prognosis-to-treatment process. To compare the performances of SM, PM, PC, and CP, we calculate

the expected utilities of these four processes by averaging the actual utilities of the selected treatments

across the entire patient population. Throughout the paper, we useEUSM ,EUPM ,EUPC , andEUCP

to represent the expected utilities of SM, PM, PC, and CP, respectively. See Appendix A for the exact

expressions of EUSM , EUPM , EUPC , and EUCP .

3.3. Doctor and Patient Informational and Cognitive Limitations

In practice, neither doctors nor patients are perfectly rational decision makers. Doctors face imperfect

information and their judgments about a patient’s prognosis may contain random errors (Gigerenzer

and Muir Gray 2011, Kahneman et al. 2016). Patients, too, may struggle to interpret medical infor-

mation and combine it with their personal preferences, often due to limitations like illiteracy and

innumeracy (Williams et al. 2002).

We begin by describing how doctors develop personalized prognosis predictions under PM and CP.

Doctors observe noisy signals SXt and SYt about the prognosis on the x and y dimensions, given by:

SXt :=Xt + EXt , SYt := Yt + EYt , (10)

where EXt ’s and EYt ’s are identically normally distributed random variables with mean zero and vari-

ances σ2
d,X/2 and σ2

d,Y /2, respectively. Here, σd,X and σd,Y capture sources of doctor prognoses errors

including imperfect information as well as inconsistencies in doctor’s judgments. The normal distri-

bution assumption for the errors as well as the prior beliefs (i.e., true medical prognoses Xt and Yt

in this paper) is common in behavioral operations management and information-updating literature

(Grossman and Stiglitz 1976, 1980, Morris and Shin 2002, Allen et al. 2006, Feiler and Tong 2022).

We assume that EXt ’s and EYt ’s are independent across treatments, dimensions, and patient, and also

independent of Xt’s and Yt’s.

The doctor’s predictions for each prognosis dimension, X̂t and Ŷt, are then weighted combinations:

X̂t = λXS
X
t + (1−λX)µXt, Ŷt = λY S

Y
t + (1−λY )µY t, (11)

where λX , λY ∈ [0,1] indicate the doctor’s weight on the signal. Here, the assumption of a normal

distribution for the true medical prognoses (Xt and Yt) and doctor errors (EXt and EYt ) ensures that

the predicted prognoses (X̂t and Ŷt) fall between the signals and the priors (µXt and µY t). This prop-

erty extends to any symmetric and quasiconcave probability density functions for the true medical

prognoses and doctor errors (Chambers and Healy 2012). Consequently, we believe that our insights

remain valid whenever Xt, Yt, EXt and EYt follow symmetric and quasiconcave probability densities.
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We now turn to describing our model under PC or CP. Under PC, the doctor shares average progno-

sis values (X̂t = µXt and Ŷt = µY t), while under CP, the doctor shares personalized prognosis predic-

tions in (11). The patient’s perceived utility Ûit(.) is defined for PC and CP in (8) and (9), respectively.

Here, γit represents type-i patient’s random error, assumed to be identically normally distributed with

mean zero and variance σ2
p,i/2, where σp,1 and σp,2 capture levels of patient irrationality. We assume

that γit’s are independent across treatments and patients, and from Xt’s, Yt’s, EXt ’s, and EYt ’s.

The probability that a type-i patient selects treatment A is given by:

Pi(wi, x̂t, ŷt) = Pγ
(
ÛA(wi, x̂A, ŷA)≥ ÛB(wi, x̂B, ŷB)

)
= Φ

(
wi(x̂A− x̂B) + (1−wi)(ŷA− ŷB)

σp,i

)
,

(12)

where Φ(.) is the standard normal cumulative distribution function.

4. How Should Doctors Optimally Account for Cognitive Limitations?

We begin by examining how doctors can address their informational and cognitive limitations—both

in assessing patients medically and in their ability to effectively communicate and apply patient pref-

erences into SDM. To do so, it is helpful to define the parameters λX and λY from (11), relative to

Bayesian benchmarks:

λX = αdλ
bayes
X , λY = αdλ

bayes
Y , (13)

where λbayesX =
σ2
X

σ2
X+σ2

d,X
and λbayesY =

σ2
Y

σ2
Y +σ2

d,Y
represent Bayesian weights on prognosis signals for

dimensions x and y, respectively. Here, αd = 1 reflects a doctor using Bayesian weights, while αd > 1

or αd < 1 indicates placing more or less weight on the signals than the Bayesian benchmark.

In models using standardized medical prognoses (SM and PC), doctors do not personalize medical

prognoses. Thus, we focus on how doctors should handle random errors when personalizing medical

prognoses under PM and CP. Optimal weighting, denoted by α∗d, maximizes the expected utilities

EUPM and EUCP . The following proposition characterizes α∗d.

Proposition 1 (a) Under PM, α∗d = 1. (b) Under CP, α∗d > 1 if |∆µ1| and |∆µ2| are small; α∗d < 1 if

they are large.

Under PM where doctors subject treatment decisions only to their own errors, Proposition 1(a)

shows that doctors should mitigate their own prognosis noise by placing the Bayesian weight (αd = 1)

on the priors. However, under CP, Proposition 1(b) shows that doctors should adjust weight depending
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on patient preferences. Specifically, they should reduce weight on priors if patients have weak pref-

erences between treatments (small |∆µ1| and |∆µ2|) and increase it if preferences are strong (large

|∆µ1| and |∆µ2|).
The reasoning behind this is that patients with bounded rationality are more likely to choose the

wrong treatment when treatment utilities, based on the medical prognoses provided, are similar.

Therefore, prognosis values that create a clear difference between the utilities of the two treatments

help reduce the likelihood that patients will make the wrong choice. Thus, the doctor’s optimal weight-

ing of priors (µXt and µY t) and signals depends on whether the treatment utilities derived from the

priors are close or far apart. The terms ∆µ1 and ∆µ2 in (3) and (4) represent the utility differences

between treatment A and B for type-1 and type-2 patients, respectively, based on the priors. Thus,

(i) when patients have weak preferences (small |∆µ1| and |∆µ2|), the treatment utilities calculated

using the priors are similar, and (ii) when patients have strong preferences (large |∆µ1| and |∆µ2|),
the treatment utilities calculated using the priors are already significantly different. To ensure a sig-

nificant difference in the utilities of the two treatments, in case (i), it is beneficial to deviate from the

priors by placing less weight on them than the Bayesian weight, while in case (ii), it is beneficial to

adhere closely to the priors by placing more weight on them than the Bayesian weight.

In the remainder of the paper, we acknowledge that doctors are not able to place the optimal weight

on the signals. In Section 5, we will show that neglecting these errors in prognosis-sharing signifi-

cantly affects the conditions under which prognosis personalization is beneficial.

5. When Should Clinical Guidelines Advise Personalized Prognoses?
In this section, we analyze when clinical guidelines should encourage doctors to personalize medical

prognoses. Personalization holds promise because it can improve patient outcomes by accounting for

individual treatment responses. However, because doctors’ prognosis predictions are inherently noisy

and may not fully account for patients’ decision errors, personalizing medical prognoses also risks

exacerbating the effects of patients’ cognitive limitations.

To balance these factors, we assess the net effect of prognosis personalization by focusing on two

aspects: doctor accuracy and patient prognosis heterogeneity. To quantify the level of prognosis het-

erogeneity relative to doctor error, we introduce two metrics, rX and rY , defined as follows:

rX :=
σ4
X

σ2
X +σ2

d,X

, rY :=
σ4
Y

σ2
Y +σ2

d,Y

. (14)

These ratios, which we call “prognosis personalization ratios” for the dimensions x and y, increase in

prognosis heterogeneity and decrease in doctor error. In this section, we consider two types of settings:

settings without patient participation and settings with patient participation. Table 2 summarizes our

key findings, which we discuss in detail in Sections 5.1 and 5.2.
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Patient participation Conditions Personalize medical prognoses? Corresponding result

No

Doctors with αd = 1 (Bayesian) Yes Prop. 2

Doctors with αd < 1 Yes Prop. 3a

Doctors with αd > 1 Yes if rX and rY high; No if low Prop. 3b

Yes
Small |∆µ1| and |∆µ2| Yes Prop. 4

Large |∆µ1| and |∆µ2| Yes if rX and rY high; No if low Prop. 5a and 5b
Table 2 Summary of Section 5 findings.

5.1. Medical Prognoses Personalization without Patient Participation (PM vs SM)

In this subsection, we consider settings in which patients do not participate in decision-making, and

so their errors do not affect treatment decisions. Our goal is to determine when PM outperforms SM.

This comparison depends on the doctor’s weighting of signals relative to the Bayesian benchmark.

Therefore, we divide our analysis into two cases: Bayesian and non-Bayesian doctors.

5.1.1. Bayesian Doctors. We start by comparing the expected utilities of PM and SM for

Bayesian doctors (αd = 1).

Proposition 2 If αd = 1, then EUPM >EUSM , and EUPM increases with rX and rY .

Proposition 2 establishes that, in settings without patient participation and with Bayesian doctors,

PM outperforms SM. Proposition 2 further shows that when prognosis personalization ratios (rX and

rY ) are high, i.e., when medical prognosis heterogeneity (σX , σY ) is high relative to doctor error

(σd,X , σd,Y ), it becomes most valuable to advise doctors to switch from SM to PM. The rationale is

as follows. As discussed at the beginning of Section 5, switching from SM to PM has two oppos-

ing effects: it can enhance patient utility by addressing heterogeneity in patient responses, but it also

exposes treatment decisions to human cognitive limitations due to doctors’ noisy prognoses predic-

tions. As such, to ensure that PM outperforms SM, it becomes crucial for doctors under PM to adjust

their weighting of priors to account for their own noise. Bayesian doctors under PM are able to do so

because they place the optimal weight on priors as per Proposition 1(a).

5.1.2. Non-Bayesian Doctors. For non-Bayesian doctors, we explore whether PM still outper-

forms SM, given that these doctors do not optimally weight signals as Bayesian doctors do.

Proposition 3 Let doctors be non-Bayesian. Then:

(a) If αd < 1, then EUPM >EUSM , and EUPM increases with rX and rY .

(b) If αd > 1, for a fixed rY (rX), there exists a constant ψX (ψY ) such that EUPM > EUSM if and

only if rX ≥ ψX (rY ≥ ψY ). Furthermore, EUPM increases with rX and rY if and only if rX and rY

are sufficiently large, and it decreases otherwise.
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Proposition 3(a) establishes that for doctors with αd < 1, PM continues to yield higher expected

utility than SM. The rationale is as follows. As noted earlier, prognosis personalization (i) offers the

benefit of tailoring treatments to individual medical outcomes, but (ii) also increases decision errors

due to doctors’ imprecise predictions. Indeed, the second (negative) effect can dominate the first only

if the doctor under PM places more weight on the signal than the optimal weight. However, under

PM, doctors with αd < 1 underweight the signals relative to the optimal weight as per Proposition

1(a), thereby preventing the negative effect from becoming dominant. Furthermore, Proposition 3(a)

suggests that the value of switching from SM to PM increases with higher prognosis personalization

ratios (rX and rY ). As these ratios increase—indicating increased prognosis heterogeneity (σX and

σY ) or reduced doctor error (σd,X and σd,Y )—the need for prognosis personalization becomes more

pronounced.

On the other hand, since under PM, doctors with αd > 1 place excessive weights on the signals

relative to the optimal weight, as established by Proposition 1(a), the risk of decision errors may

outweigh the benefits, depending on the level of rX and rY . Specifically, Proposition 3(b) establishes

that the benefits of personalization outweigh the negative effect of decision errors if and only if the

prognosis personalization ratios (rX and rY ) are sufficiently low.

Moreover, Proposition 3(b) interestingly shows that for doctors with αd > 1, the expected utility

of PM does not necessarily increase in the prognosis personalization ratios (rX and rY ). Due to this

non-monotone behavior of the expected utility under PM, the largest gain from implementing SM

(rather than PM) occurs not at low, but at moderate levels of rX and rY (i.e., when there is moderate

medical prognosis heterogeneity relative to doctor error). This is due to two opposing effects: Higher

ratios (indicating greater prognosis heterogeneity relative to doctor error) increase the need to tailor

treatments to individual medical outcomes. On the other hand, as rX and rY increase—either due

to increased heterogeneity or decreased doctor error—, the weight placed on the noisy signal by the

doctor with αd > 1 becomes even greater (recall (11) and (13)). Depending on which effect is stronger,

the expected utility of PM may increase or decrease in rX and rY . Proposition 3(b) further confirms,

as expected, that implementing PM (rather than SM) is most beneficial at high rX and rY since the

expected utility of PM increases with rX and rY if rX and rY are sufficiently large.

5.2. Medical Prognoses Personalization with Patient Participation (CP vs PC)

In this subsection, we consider settings in which patients participate in decision-making, and so their

errors affect treatment decisions. Here, we ask: When does CP outperform PC?

In contrast to Section 5.1, here, since boundedly rational patients are involved in decision-making,

placing the Bayesian weights on the priors in response to human cognitive limitations is no longer
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optimal as per Proposition 1(b). Hence, it is not obvious whether prognosis personalization is still

beneficial for Bayesian doctors (αd = 1) and those with αd < 1. Indeed, in settings with patient par-

ticipation, when to encourage doctors to switch from PC to CP depends on the degree of patient

preference. We start by comparing CP and PC when patients have weak preferences between treat-

ments.

Proposition 4 If |∆µ1| and |∆µ2| are small, then EUCP >EUPC , and EUCP increases with rX and

rY .

Proposition 4 demonstrates that if patients have weak preferences between treatments (small |∆µ1|

and |∆µ2|), CP outperforms PC. Furthermore, as medical prognosis heterogeneity increases relative

to doctor errors (i.e., as rX and rY increase), the utility gain from prognosis personalization becomes

larger. This effect is observed even for doctors with αd > 1, in contrast to Section 5.1. The reasons for

this are as follows. First, as detailed in Section 5.1, to ensure that prognosis personalization increases

patient utility, it becomes crucial for doctors not to place too much weight on the signal relative to

the optimal weight. However, for boundedly rational patients with weak preferences, doctors with

αd > 1 actually apply the optimal weight to the signal, as per Proposition 1(b). Second, when patients

have weak preferences between treatments, it becomes less clear a priori which treatment is most

appropriate. In these cases, personalizing medical prognoses by providing patient-specific information

can significantly reduce this uncertainty and improve patient outcomes.

Next, we compare CP and PC when patients have strong preferences between treatments.

Proposition 5 If |∆µ1| and |∆µ2| are large, then:

(a) For sufficiently high rX and rY , EUCP >EUPC , and EUCP increases with rX and rY .

(b) For sufficiently low rX and rY , EUCP <EUPC , and EUCP decreases with rX and rY .

(c) The effect of rX and rY on the optimality of CP or PC may not be monotone.

Proposition 5(a) demonstrates that in settings where patients with strong preferences are involved

in decision-making (large |∆µ1| and |∆µ2|), prognosis personalization increases patient utility when

medical prognosis heterogeneity is high relative to doctor errors (i.e., high rX and rY ). Further-

more, the utility gain from prognosis personalization tends to become more substantial as rX and rY

increase.

On the other hand, Proposition 5(b) establishes that prognosis personalization can lead to a utility

loss when medical prognosis heterogeneity is low relative to doctor errors (i.e., rX and rY are low).

Proposition 5(b) further confirms that the utility loss from prognosis personalization does not always
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Figure 1 Illustration of Proposition 5(c).

decrease as prognosis heterogeneity becomes larger relative to doctor error (i.e., as rX and rY become

larger). These findings hold even for Bayesian doctors and those with αd < 1, contrary to Section 5.1.

The intuition is as follows. As discussed earlier, although prognosis personalization has the potential

to address the heterogeneous needs of each patient, it can lead to significant utility losses if the doctor

overreacts to the noisy signals by placing too much weight on them compared to the optimal weight.

When boundedly rational patients with strong preferences are involved in decision-making, Bayesian

doctors and even those with αd < 1 “overweight” the signal relative to the optimal weight, as estab-

lished by Proposition 1(b). Thus, it is possible that prognosis personalization may be detrimental even

for Bayesian doctors and those with αd < 1.

Proposition 5(c) shows that the effect of rX and rY on the optimality of prognosis personalization

can be non-monotonic. For example, the optimal policy may switch from CP to PC and then from PC

to CP as rX or rY increase (e.g., see Figure 1). One of the reasons for this is that the expected utility

of CP is not monotone in rX and rY . That is, it decreases in rX and rY if rX and rY are sufficiently

low, while it increases in rX and rY if rX and rY are sufficiently high, as established by Proposition

5(a) and Proposition 5(b). Another reason is that in settings with patient participation, an increase in

rX or rY affects the utilities of type-1 and type-2 patients differently. This is because after learning

their individual prognoses from the doctor, each patient type predicts the utility of each treatment by

(i) applying different weights (w1 and w2) to the prognoses, and (ii) incorporating random errors with

different variances (σp,1 and σp,2). As a result of this heterogeneous effect of an increase in rX or rY

on type-1 and type-2 patients, whether CP or PC is optimal does not follow a straightforward pattern.

6. When Should Clinical Guidelines Advise Patient Participation?

In this section, we analyze when clinical guidelines should recommend patient participation in the

decision-making process. Specifically, we address the questions: When does PC outperform SM?, and

when does CP outperform PM?
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Patient participation can improve patient utility by accounting for different preferences. However,

because patients may not fully understand medical prognoses or accurately apply their personal prefer-

ences due to bounded rationality, patient participation also introduces potential decision errors. Thus,

the net impact of patient participation depends on the degree of patient error (σp,1 and σp,2) and the

degree of variation in treatment responses between patient types. We quantify this response variation

with a measure dp:

dp = ∆µ1−∆µ2 = (w1−w2)(µXA−µXB) + (w2−w1)(µY A−µY B). (15)

A larger dp indicates stronger preferences for different treatments among patient types. The following

proposition identifies the necessary and sufficient conditions under which patient participation (PC or

CP) yields greater utility than no patient participation (SM or PM).

Proposition 6 (a) For given σp,1 and σp,2, there exists a threshold f(σp,1, σp,2) such that EUPC >

EUSM if and only if dp ≥ f(σp,1, σp,2). The threshold f(σp,1, σp,2) increases with σp,1 and σp,2.

(b) For given σp,1 and σp,2, there exists a threshold g(σp,1, σp,2) such that EUCP > EUPM if dp ≥

g(σp,1, σp,2).5 The threshold g(σp,1, σp,2) increases with σp,1 and σp,2, provided these values are suffi-

ciently large.

Proposition 6 shows that PC and CP tend to perform better than SM and PM, respectively, as

patient error levels (σp,1 and σp,2) decrease and treatment response differences (dp) increase. In other

words, patient participation is beneficial when dp is high relative to patient error. Higher patient error

increases the risk of choosing the wrong treatment, which weakens the performance of PC and CP

relative to SM and PM, respectively. Furthermore, recall that the doctor does not know whether the

patient is type-1 or type-2. As dp increases, the potential benefit of reducing uncertainty about patient

type by involving patients in decision-making increases, thereby improving patient utility.

7. SDM Optimal Design Decision Tree Summary

In Sections 4, 5, and 6, we analyzed (i) how doctors should manage their cognitive limitations, (ii)

when they should personalize medical prognoses, and (iii) when patient participation is beneficial.

This section synthesizes these findings to outline the optimal design of the prognosis-to-treatment

process, identifying the sufficient conditions under which SM, PM, PC, or CP are superior. Figure 2

presents a summary of these findings in a decision tree, which is explained in detail below.

5As long as αd ≥ 0.5 holds, this condition is also necessary for EUCP >EUPM to hold.
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Figure 2 The best design of prognosis-to-treatment processes.

When the mean difference in treatment effects between type-1 and type-2 patients (dp) is small

relative to patient error (σp,1 and σp,2), Proposition 6 suggests avoiding patient participation (i.e., SM

or PM is superior). In settings without patient participation, Propositions 2 and 3 establish that medical

prognosis personalization (PM) is beneficial as long as doctors do not over-rely on noisy signals (αd ≤
1). However, if doctors assign more weight to these signals than the Bayesian benchmark (αd > 1), it

may be preferable to standardize prognoses (SM) when prognosis personalization ratios (rX and rY )

are low.

On the other hand, when the treatment effect difference (dp) is large relative to patient error (σp,1

and σp,2), Proposition 6 demonstrates that patient participation is beneficial (i.e., PC or CP is superior).

In these settings, Propositions 4 and 5 show that medical prognosis personalization (CP) is advanta-

geous when patients have weak preferences between treatments. However, for patients with strong

preferences, it may be better to avoid medical prognosis personalization (PC) when the prognosis

personalization ratios (rX and rY ) are low.

So far, we have identified when SM, PM, PC, or CP is the optimal policy. However, it is equally

important to understand when these policies significantly outperform others. The following corollary

provides insight into the conditions under which each approach provides the greatest benefit:

Corollary 1 (a) SM is most valuable when dp is low relative to σp,1 and σp,2, αd > 1, and rX and rY

are moderate.

(b) PM is most valuable when dp is low relative to σp,1 and σp,2, αd = 1, and rX and rY are high.

(c) PC is most valuable when dp is high relative to σp,1 and σp,2, αd > 1, and rX and rY are moderate.

(d) CP is most valuable when dp is high relative to σp,1 and σp,2, αd < 1, and rX and rY are high.
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Interestingly, Corollary 1(a) and 1(c) show that policies without medical prognosis personalization

(SM or PC) significantly outperform those with medical prognosis personalization (PM or CP) when

prognosis heterogeneity, relative to the level of doctor errors, is moderate (i.e., moderate rX and rY

values) rather than low. This is because under SM and PC, expected utility remains constant across

prognosis personalization ratios rX and rY , whereas under PM and CP, it exhibits a non-monotonic

pattern as these ratios vary, as shown in Propositions 3(b), 5(a), and 5(b).

Furthermore, Corollary 1(d) presents a surprising insight: CP performs significantly better than the

other policies not with Bayesian doctors, but rather when doctors place less weight on noisy private

information than the Bayesian weight. This is because a high dp implies strong patient preferences

(large |∆µ1| and |∆µ2|, see (15)), and in such settings, placing less weight on noisy signals than the

Bayesian weight becomes the optimal weighting policy, as per Proposition 1(b).

8. Conclusions
8.1. Managerial Implications

In medical care, treatment personalization has two key dimensions: medical prognoses and patient

preferences. While the existing literature generally supports personalizing both dimensions, this study

presents a more nuanced approach. Beyond SM, which does not allow for personalization, and CP,

which personalizes both dimensions, we introduce intermediate approaches—PM and PC—that allow

for single-dimension personalization, providing valuable guidance on when to avoid, partially imple-

ment, or fully adopt personalization.

Our findings suggest that when (i) prognosis heterogeneity is high relative to doctor error and (ii)

the treatment effect differences are small relative to patient error, personalizing treatment based on

both medical prognoses and patient preferences should be encouraged. However, in contexts where

patient or doctor errors predominates, personalizing treatment to account for only patient preferences

or only medical prognoses may lead to better outcomes than full personalization, challenging the

common view that full personalization is always optimal.

For policymakers who favor full personalization, reducing random errors in patients and doctors is

crucial. Training programs to improve patients’ health literacy can reduce patient-side errors (Mus-

cat et al. 2019). Alternatively, doctors could elicit patient preferences and integrate them into their

decisions, rather than fully shifting decision-making to patients. Additionally, pooling forecasts from

multiple doctors—using the “wisdom of the crowd”—can help (Surowiecki 2005, Sunstein 2006,

Sjöberg 2009, Davis-Stober et al. 2014), as shown by Kattan et al. (2016), who found that averaging

the predictions of as few as five clinicians yielded prediction accuracy comparable to the that of the
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best single clinician. Group activities and team-based care, such as case conferences, expert consulta-

tions, and morning rounds, are traditional methods to leverage the “wisdom of the crowd” (Radcliffe

et al. 2019).

The coproduction framework outlined in this paper has relevance in many other service contexts,

ranging from supply chain management to financial planning. For example, in retail distribution,

retailers and brand manufacturers work together to allocate store resources. Manufacturers provide

demand forecasts that retailers use to make space allocation decisions. Similarly, in financial planning,

consultants offer guidance to individual investors, who then make decisions based on that information.

We believe that the insights developed here can be applied across such diverse service contexts.

8.2. Limitations and Future Directions

This study has several limitations, which can serve as potential directions for future research. First,

our examination of the coproduction process primarily involves the doctor acting as a “technical

expert,” providing patients with relevant information, and allowing patients to make the final treat-

ment decision. However, coproduction can take other forms, such as doctors incorporating patient

preferences directly into treatment choices. Future work could compare these approaches to find the

optimal design for coproduction.

Second, we did not account for the time that personalization requires. In practice, personalization

typically consumes more of a doctor’s time than standardized methods. Future research could explore

the time aspects of personalization and its impact on clinical workflows.

Third, our model considers personalizing prognoses along both the x and y dimensions. Exploring

optimal designs where only one dimension is personalized could reveal useful insights.

Lastly, we assumed a linear utility model with two treatment options. Future work may delve into

scenarios involving a non-linear utility model and offer a broader perspective on personalization.
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APPENDIX
The appendices are organized as follows. In Appendix A, we derive the exact expressions for the expected utilities under

SM, PM, PC, and CP. In Appendix B, we present proofs for the results in the present paper.

Throughout the proofs, φ(z) and Φ(z) denote the probability density function (pdf) and the cumulative distribution

function (cdf) of the standard normal distribution at point z, respectively. f(x;µ,σ) represents normal pdf with mean µ

and standard deviation σ at point x. Let ∆µX , ∆µY , and ∆µ denote:

∆µX = µXA−µXB, ∆µY = µY A−µY B, and ∆µ= w̄∆µX + (1− w̄)∆µY . (16)

Recall that we assume ∆µX > 0, ∆µY < 0, and ∆µ< 0. Furthermore, let us define σ̄i and σ̄ as:

σ̄i =
√
w2
i rX + (1−wi)2rY for i= 1,2, and σ̄=

√
w̄2rX + (1− w̄)2rY , (17)

where w̄, rX , and rY are given with (2), and (14), respectively.

Throughout the appendix, EUSM , EUPC , EUPM , and EUCP represent the expected utility of SM, PC, PM, and CP,

respectively. Finally, I{A} denotes the indicator random variable associated with event A that has value 1 if event A

occurs and has value 0 otherwise.

Appendix A: Derivation of the Expected Utilities under SM, PM, PC, and CP

Lemma A1 The expected utilities of SM, PC, PM, and CP, denoted by EUSM , EUPC , EUPM , and EUCP , respectively,

are equal to:

EUSM = w̄µXB + (1− w̄)µY B, (18)

EUPM = ∆µΦ

(
∆µ

αdσ̄

)
+ σ̄φ

(
∆µ

αdσ̄

)
+ w̄µXB + (1− w̄)µY B, (19)

EUPC = pEUPC
1 + (1− p)EUPC

2 + w̄µXB + (1− w̄)µY B, (20)

EUCP = pEUCP
1 + (1− p)EUCP

2 + w̄µXB + (1− w̄)µY B. (21)

In (20) and (21), EUPC
i and EUCP

i are equal to:

EUPC
i = ∆µiΦ

(
∆µi
σp,i

)
, (22)

EUCP
i = ∆µiΦ

(
∆µi√

α2
dσ̄

2
i +σ2

p,i

)
+

αdσ̄
2
i√

α2
dσ̄

2
i +σ2

p,i

φ

(
∆µi√

α2
dσ̄

2
i +σ2

p,i

)
, (23)

where ∆µ1, ∆µ2, ∆µ, σ̄i and σ̄ are given with (16) and (17), respectively, and Φ(.) and φ(.) are cdf and pdf of the

standard normal distribution, respectively.

Proof: Part I: Since under SM, doctors always choose treatment B, the expected utility of SM is equal to:

EUSM = pEXB ,YB [w1XB + (1−w1)YB] + (1− p)EXB ,YB [w2XB + (1−w2)YB]

= w̄µXB + (1− w̄)µY B, (24)

where the subscripts in the expectations indicate what variable the expectation is taken over. The first term in the first

equality corresponds to the event that the doctor sees a type-1 patient, whereas the second term corresponds to the event
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that the doctor sees a type-2 patient. Furthermore, recalling that µXB and µY B denote the expectations of XB and YB ,

respectively, the second equality follows from (2).

Part II: The expected utility of PM is equal to:

EUPM

= pESXt ,SYt ,Xt,Yt
[
(w1XA + (1−w1)YA)I{w̄(X̂A− X̂B) + (1− w̄)(ŶA− ŶB)≥ 0} (25)

+ (w1XB + (1−w1)YB)I{w̄(X̂A− X̂B) + (1− w̄)(ŶA− ŶB)< 0}
]

(26)

+ (1− p)EXt,Yt,SXt ,SYt
[
(w2XA + (1−w2)YA)I{w̄(X̂A− X̂B) + (1− w̄)(ŶA− ŶB)≥ 0} (27)

+ (w2XB + (1−w2)YB)I{w̄(X̂A− X̂B) + (1− w̄)(ŶA− ŶB)< 0}
]

(28)

=ESXt ,SYt ,Xt,Yt
[
(w̄XA + (1− w̄)YA)I{w̄(X̂A− X̂B) + (1− w̄)(ŶA− ŶB)≥ 0}

+ (w̄XB + (1− w̄)YB)I{w̄(X̂A− X̂B) + (1− w̄)(ŶA− ŶB)< 0}
]
, (29)

where the term in (25) corresponds to the event that the doctor sees a type-1 patient and treatment A is selected, the term

in (26) corresponds to the event that the doctor sees a type-1 patient and treatment B is selected, whereas term in (27)

corresponds to the event that the doctor sees a type-2 patient and treatment A is selected, and term in (28) corresponds to

the event that the doctor sees a type-2 patient and treatment B is selected. Furthermore, the second equality follows from

the linearity of expectation and from (2). For algebraic convenience, we will first derive the expression for the expected

utility difference between PM and SM by combining (18) and (29), and then find the exact expression for EUPM :

EUPM −EUSM

=ESXt ,SYt ,Xt,Yt
[
(w̄(XA−XB) + (1− w̄)(YA−YB))I

{
w̄(X̂A− X̂B) + (1− w̄)(ŶA− ŶB)≥ 0

}]
= w̄ESXt ,SYt ,Xt

[
(XA−XB)I

{
w̄(X̂A− X̂B) + (1− w̄)(ŶA− ŶB)≥ 0

}]
+ (1− w̄)ESXt ,SYt ,Yt

[
(YA−YB)I

{
w̄(X̂A− X̂B) + (1− w̄)(ŶA− ŶB)≥ 0

}]
= w̄ESXt ,SYt

[
EXt

[
(XA−XB)I

{
w̄(X̂A− X̂B) + (1− w̄)(ŶA− ŶB)≥ 0

}∣∣∣∣SXt , SYt ]]
+ (1− w̄)ESXt ,SYt

[
EYt

[
(YA−YB)I

{
w̄(X̂A− X̂B) + (1− w̄)(ŶA− ŶB)≥ 0

}∣∣∣∣SXt , SYt ]]
= w̄ESXt ,SYt

[
EXt

[
(XA−XB) | SXt , SYt

]
I
{
w̄(X̂A− X̂B) + (1− w̄)(ŶA− ŶB)≥ 0

}]
+ (1− w̄)ESXt ,SYt

[
EYt

[
(YA−YB) | SXt , SYt

]
I
{
w̄(X̂A− X̂B) + (1− w̄)(ŶA− ŶB)≥ 0

}]
= w̄ESXt ,SYt

[(
E[XA | SXA ]−E[XB | SXB ]

)
I
{
w̄(X̂A− X̂B) + (1− w̄)(ŶA− ŶB)≥ 0

}]
+ (1− w̄)ESXt ,SYt

[(
E[YA | SYA ]−E[YB | SYB ]

)
I
{
w̄(X̂A− X̂B) + (1− w̄)(ŶA− ŶB)≥ 0

}]
, (30)

where the second equality follows from linearity of the expectation, the third equality follows from the

law of iterated expectations, the forth equality follows from the fact that when SXt and SYt are given,

I
{
w̄(X̂A− X̂B) + (1− w̄)(ŶA− ŶB)≥ 0

}
is not random anymore, and the fifth equality follows from the independence

of SXt and SYt . In (30), using (10), (11) and (13), we can write X̂A− X̂B and ŶA− ŶB as:

X̂A− X̂B = αd
σ2
X

σ2
X +σ2

d,X

(SXkA−SXkB) +

(
1−αd

σ2
X

σ2
X +σ2

d,X

)
∆µX = ∆µX +αd

√
rXZX ,
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ŶA− ŶB = αd
σ2
Y

σ2
Y +σ2

d,Y

(SYkA−SYkB) +

(
1−αd

σ2
Y

σ2
Y +σ2

d,Y

)
∆µY = ∆µY +αd

√
rY ZY , (31)

where rX and rY are given with (14), and ∆µX and ∆µY are defined in (16), and ZX and ZY are standard normal random

variables. Similarly, E[XA | SXA ]−E[XB | SXB ] and E[YA | SYA ]−E[YB | SYB ] are equal to:

E[XA | SXA ]−E[XB | SXB ] =
σ2
X

σ2
X +σ2

d,X

(SXkA−SXkB) +

(
1− σ2

X

σ2
X +σ2

d,X

)
∆µX = ∆µX +

√
rXZX ,

E[YA | SYA ]−E[YB | SYB ] =
σ2
Y

σ2
Y +σ2

d,Y

(SYkA−SYkB) +

(
1− σ2

Y

σ2
Y +σ2

d,Y

)
∆µY = ∆µY +

√
rY ZY . (32)

Thus, EUPM −EUSM in (30) could be rewritten as:

EUPM −EUSM

= w̄EZX ,ZY [(∆µX +
√
rXZX)I {w̄(∆µX +αd

√
rXZX) + (1− w̄)(∆µY +αd

√
rY ZY )≥ 0}]

+ (1− w̄)EZX ,ZY [(∆µY +
√
rY ZY )I {w̄(∆µX +αd

√
rXZX) + (1− w̄)(∆µY +αd

√
rY ZY )≥ 0}]

=EZX ,ZY [(∆µ+ w̄
√
rXZX + (1− w̄)

√
rY ZY )I {∆µ+αd(w̄

√
rXZX + (1− w̄)

√
rY ZY )≥ 0}]

=EZ [(∆µ+ σ̄Z)I {∆µ+αdσ̄Z ≥ 0}]

=

∫ ∞
− ∆µ
αdσ̄

(∆µ+ σ̄z)φ(z)dz

= ∆µΦ

(
∆µ

αdσ̄

)
+ σ̄φ

(
∆µ

αdσ̄

)
, (33)

where ∆µ and σ̄ are given with (16) and (17), respectively, Z is a standard normal random variable, and φ(z) is the pdf of

the standard normal distribution at point z. The first equality follows from substituting the expressions in (31) and (32) for

X̂A − X̂B , ŶA − ŶB , E[XA | SXA ]−E[XB | SXB ], and E[YA | SYA ]−E[YB | SYB ] in (30), the second equality follows from

linearity of the expectation and (16), the third equality follows from plugging σ̄Z for w̄
√
rXZX + (1− w̄)

√
rY ZY , which

are equal in distribution, the forth equality follows from the definition of the expectation, and the fifth equality follows

from algebra. Finally, combining (18) and (33), we conclude that the expected utility of PM is given with (19).

Part III: The expected utility of PC is equal to:

EUPC = pEXt,Yt
[
(w1XA + (1−w1)YA)P1(w1, µXt, µY t) + (w1XB + (1−w1)YB) (1−P1(w1, µXt, µY t))

]
+ (1− p)EXt,Yt

[
(w2XA + (1−w2)YA)P2(w2, µXt, µY t) + (w2XB + (1−w2)YB) (1−P2(w2, µXt, µY t))

]
= p
(

(w1µXA + (1−w1)µY A)P1(w1, µXt, µY t) + (w1µXB + (1−w1)µY B) (1−P1(w1, µXt, µY t))
)

+ (1− p)EXt,Yt
[
(w2µXA + (1−w2)µY A)P2(w2, µXt, µY t)

+ (w2µXB + (1−w2)µY B) (1−P2(w2, µXt, µY t))
]

= p
(
w1(µXA−µXB) + (1−w1)(µY A−µY B)

)
P1(w1, µXt, µY t)

+ (1− p)
(
w2(µXA−µXB) + (1−w2)(µY A−µY B)

)
P2(w2, µXt, µY t)

+ w̄µXB + (1− w̄)µY B

= p∆µ1Φ

(
∆µ1

σp,1

)
+ (1− p)∆µ2Φ

(
∆µ2

σp,2

)
+ w̄µXB + (1− w̄)µY B, (34)
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where Pi(wi, x̂t, ŷt) is given with (12). where the second equality follows from (16), the third equality follows from

algebraic manipulations, and the last equality follows from (3), and (4), and substituting the expression in (12) for

Pi(wi, x̂t, ŷt).

Part IV: The expected utility of CP is equal to:

EUCP = pESXt ,SYt ,Xt,Yt
[
(w1XA + (1−w1)YA)P1(w1, X̂t, Ŷt)

+ (w1XB + (1−w1)YB)
(

1−P1(w1, X̂t, Ŷt)
)]

+ (1− p)ESXt ,SYt ,Xt,Yt
[
(w2XA + (1−w2)YA)P2(w2, X̂t, Ŷt)

+ (w2XB + (1−w2)YB)
(

1−P2(w2, X̂t, Ŷt)
)]
. (35)

For algebraic convenience, we will first derive the expression for the expected utility difference between CP and SM by

combining (18) and (35), and then find the exact expression for EUCP :

EUCP −EUSM

= pESXt ,SYt ,Xt,Yt
[
(w1(XA−XB) + (1−w1)(YA−YB))P1(w1, X̂t, Ŷt)

]
+ (1− p)ESXt ,SYt ,Xt,Yt

[
(w2(XA−XB) + (1−w2)(YA−YB))P2(w2, X̂t, Ŷt)

]
= pESXt ,SYt ,Xt,Yt

[
(w1(XA−XB) + (1−w1)(YA−YB)) Φ

(
w1(X̂A− X̂B) + (1−w1)(ŶA− ŶB)

σp,1

)]

+ (1− p)ESXt ,SYt ,Xt,Yt

[
(w2(XA−XB) + (1−w2)(YA−YB)) Φ

(
w2(X̂A− X̂B) + (1−w2)(ŶA− ŶB)

σp,2

)]
,

where the second equality follows from plugging the expression in (12) for Pi(wi, X̂t, Ŷt). Following the same steps as

in (30) and (33) (i.e., applying the law of iterated expectations, plugging the expressions in (31) and (32) for X̂A − X̂B ,

ŶA− ŶB , E[XA | SXA ]−E[XB | SXB ], and E[YA | SYA ]−E[YB | SYB ]), we can write EUCP −EUSM as:

EUCP −EUSM = pEZ
[
(∆µ1 + σ̄1Z) Φ

(
∆µ1 +αdσ̄1Z

σp,1

)]
+ (1− p)EZ

[
(∆µ2 + σ̄2Z) Φ

(
∆µ2 +αdσ̄2Z

σp,2

)]
Rearranging above expression, we have:

EUCP −EUSM

= p

∫ ∞
−∞

(∆µ1 + σ̄1z) Φ

(
∆µ1 +αdσ̄1z

σp,1

)
φ(z)dz+ (1− p)

∫ ∞
−∞

(∆µ2 + σ̄2z) Φ

(
∆µ2 +αdσ̄2z

σp,2

)
φ(z)dz

= p

(
∆µ1Φ

(
∆µ1√

α2
dσ̄

2
1 +σ2

p,1

)
+

αdσ̄
2
1√

α2
dσ̄

2
1 +σ2

p,1

φ

(
∆µ1√

α2
dσ̄

2
1 +σ2

p,1

))

+ (1− p)

(
∆µ2Φ

(
∆µ2√

α2
dσ̄

2
2 +σ2

p,2

)
+

αdσ̄
2
2√

α2
dσ̄

2
2 +σ2

p,2

φ

(
∆µ2√

α2
dσ̄

2
2 +σ2

p,2

))
, (36)

where the first equality follows from the definition of expectation and the last equality follows from algebra. Finally,

combining (18) and (36), we conclude that the expected utility of PM is given with (21). �

Appendix B: Proofs of Results
B.1. Proof of Section 4 Results

For the proof of Proposition 1, we first need the following lemma to establish the structure of EUCP
i given with (23) with

respect to αd.
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Lemma A2 (a) EUCP
i given with (23) is a quasiconcave function of αd in

[
1/2,min

{
σ2
X+σ2

d,X

σ2
X

,
σ2
Y +σ2

d,Y

σ2
Y

}]
.

(b) If |∆µi|<
√
σ̄2
i +σ2

p,i, EUCP
i increases in αd if αd ≤ 1.

(c) If |∆µi|>
√
σ̄2
i +σ2

p,i, EUCP
i decreases in αd if αd ≥ 1.

Proof of Lemma A2: (a) The derivative of EUCP
i in (23) with respect to αd is:

∂EUCP
i

∂αd
=

σ̄2
i(

α2
dσ̄

2
i +σ2

p,i

)3/2 [∆µ2
i

(
α2
dσ̄

2
i

α2
dσ̄

2
i +σ2

p,i

−αd
)

+σ2
p,i

]
φ

(
∆µi√

α2
dσ̄

2
i +σ2

p,i

)
. (37)

Let us represent G1(σ̄i, αd) by:

G1(σ̄i, αd) = ∆µ2
i (θ(σ̄i, αd)−αd) +σ2

p,i, (38)

where θ(σ̄i, αd) =
α2
dσ̄

2
i

α2
d
σ̄2
i
+σ2

p,i
and for notational brevity, we suppress the dependence of G1(σ̄i, αd) and θ(σ̄i, αd) on σp,i.

The derivative of G1(σ̄i, αd) with respect to αd is:

∂G1(σ̄i, αd)

∂αd
= ∆µ2

i

(
2

αd
θ(σ̄i, αd)(1− θ(σ̄i, αd))− 1

)
(39)

≤∆µ2
i

(
2

αd

1

2

(
1− 1

2

)
− 1

)
= ∆µ2

i

(
1

2αd
− 1

)
, (40)

where the first inequality follows since θ(σ̄i, αd)(1 − θ(σ̄i, αd)) is concave in θ(σ̄i, αd) and reaches its

maximum value at θ(σ̄i, αd) = 1/2. Furthermore, we have ∆µ2
i

(
1

2αd
− 1
)
≤ 0 for all αd ≥ 1/2. Hence,

∂G1(σ̄i,αd)

∂αd
≤ 0 follows for all αd ∈

[
1/2,min

{
σ2
X+σ2

d,X

σ2
X

,
σ2
Y +σ2

d,Y

σ2
Y

}]
, which means that G1(σ̄i, αd) decreases in

αd when αd ∈
[
1/2,min

{
σ2
X+σ2

d,X

σ2
X

,
σ2
Y +σ2

d,Y

σ2
Y

}]
. This confirms that EUCP

i is quasiconcave in αd when αd ∈[
1/2,min

{
σ2
X+σ2

d,X

σ2
X

,
σ2
Y +σ2

d,Y

σ2
Y

}]
.

(b) The proof is composed of two parts: In part I, we show that EUCP
i increases in αd for αd ∈ [1/2,1], whereas in part

II, we show that EUCP
i increases in αd for αd ∈ [0,1/2].

Part I: Setting αd equal to 1 in (37), the derivative of EUCP
i at αd = 1 is:[

∂EUCP
i

∂αd

]
αd=1

=
σ̄2
i σ

2
p,i(

σ̄2
i +σ2

p,i

)3/2 [ −∆µ2
i

σ̄2
i +σ2

p,i

+ 1

]
φ

(
∆µi√
σ̄2
i +σ2

p,i

)
> 0, (41)

where the inequality follows from |∆µi|<
√
σ̄2
i +σ2

p,i. Since the derivative of EUCP
i at αd = 1 is positive by (41) and

EUCP
i is a quasiconcave function of αd for αd ∈

[
1/2,min

{
σ2
X+σ2

d,X

σ2
X

,
σ2
Y +σ2

d,Y

σ2
Y

}]
by part (a) of this lemma, we have:

∂EUCP
i

∂αd
> 0⇔G1(σ̄i, αd)> 0 for all αd ∈ [1/2,1]. (42)

From (42), it directly follows that EUCP
i increases in αd if αd ∈ [1/2,1].

Part II: Recalling (37) and (38) from part (a), we need to show that for αd ∈ [0,1/2], ∂EU
CP
i

∂αd
> 0⇔G1(σ̄i, αd)> 0.

Noting that ∂G1(σ̄i,αd)

∂αd
is given with (39), ∂

2G1(σ̄i,αd)

∂α2
d

is equal to:

∂2G1(σ̄i, αd)

∂α2
d

= ∆µ2
i

2θ(σ̄i, αd)(1− θ(σ̄i, αd))
α2
d

(−4θ(σ̄i, αd) + 1). (43)

By (43), ∂
2G1(σ̄i,αd)

∂α2
d

> 0 for all θ(σ̄i, αd)< 1
4
⇔ αd <

σp,i√
3σ̄i

, and ∂2G1(σ̄i,αd)

∂α2
d

< 0 for all θ(σ̄i, αd)> 1
4
⇔ αd >

σp,i√
3σ̄i

. We

have two cases:
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Case 1: σp,i√
3σ̄i
≥ 1

2
. We have ∂2G1(σ̄i,αd)

∂α2
d

> 0 for all αd ∈ [0,1/2], which implies that ∂G1(σ̄i,αd)

∂αd
increases in αd for αd ∈

[0,1/2]. Since ∂G1(σ̄i,αd)

∂αd
≤ 0 at αd = 1/2 by (39) and (40), we have ∂G1(σ̄i,αd)

∂αd
≤ 0 for all αd ∈ [0,1/2], which means that

G1(σ̄i, αd) decreases in αd for αd ∈ [0,1/2]. Since G1(σ̄i, αd)> 0 at αd = 1/2 by (42), we conclude that G1(σ̄i, αd)> 0

for all αd ∈ [0,1/2].

Case 2: σp,i√
3σ̄i

< 1
2
. In the interval [0,1/2], ∂G1(σ̄i,αd)

∂αd
is a unimodal function of αd, which reaches its maximum at αd =

σp,i√
3σ̄i

. Thus, the maximum value of ∂G1(σ̄i,αd)

∂αd
in the interval [0,1/2] is[

∂G1(σ̄i, αd)

∂αd

]
αd=

σp,i√
3σ̄i

= ∆µ2
i

(
3
√

3σ̄i
8σp,i

− 1

)
. (44)

Now, we consider the following two subcases:

Case 2a: σ̄2
i ≤ 64

27
σ2
p,i. By (44), we have

[
∂G1(σ̄i,αd)

∂αd

]
αd=

σp,i√
3σ̄i

≤ 0 when σ̄2
i ≤ 64

27
σ2
p,i. Since ∂G1(σ̄i,αd)

∂αd
is nonpositive even

when it reaches its maximum value at αd =
σp,i√
3σ̄i

, we conclude that ∂G1(σ̄i,αd)

∂αd
≤ 0 for all αd ∈ [0,1/2], which means that

G1(σ̄i, αd) decreases in αd for αd ∈ [0,1/2]. Since G1(σ̄i, αd)> 0 at αd = 1/2 by (42), we conclude that G1(σ̄i, αd)> 0

for all αd ∈ [0,1/2].

Case 2b: σ̄2
i >

64
27
σ2
p,i. Recall from Case 2a that if σ̄2

i ≤ 64
27
σ2
p,i,G1(σ̄i, αd) is positive for all αd ∈ [0,1/2]. SinceG1(σ̄i, αd)

increases with σ̄i (recall (38)), it follows that when σ̄2
i >

64
27
σ2
p,i, G1(σ̄i, αd) will also be positive for all αd ∈ [0,1/2].

(c) Setting αd equal to 1 in (37), the derivative of EUCP
i at αd = 1 is:[

∂EUCP
i

∂αd

]
αd=1

=
σ̄2
i σ

2
p,i(

σ̄2
i +σ2

p,i

)3/2 [ −∆µ2
i

σ̄2
i +σ2

p,i

+ 1

]
φ

(
∆µi√
σ̄2
i +σ2

p,i

)
< 0, (45)

where the inequality follows from |∆µi|>
√
σ̄2
i +σ2

p,i. Since the derivative of EUCP
i at αd = 1 is negative by (45) and

EUCP
i is a quasiconcave function of αd for αd ∈

[
1/2,min

{
σ2
X+σ2

d,X

σ2
X

,
σ2
Y +σ2

d,Y

σ2
Y

}]
by part (a) of this lemma, it follows

that EUCP
i decreases in αd if αd ≥ 1.

�

Now, we are ready to prove Proposition 1 using Lemma A2.

Proof of Proposition 1: (a) The derivative of EUPM in (19) with respect to αd is:

∂EUPM

∂αd
=

∆µ2

α2
dσ̄

(
1

αd
− 1

)
φ

(
∆µ

αdσ̄

)
.

It is obvious that ∂EU
PM

∂αd
> 0 for all αd < 1, and ∂EUPM

∂αd
< 0 for all αd > 1. Hence, EUPM is a unomidal function, which

reaches its maximum at αd = 1.

(b) It follows from Lemma A2(b) that if |∆µ1| <
√
σ̄2

1 +σ2
p,1, and |∆µ2| <

√
σ̄2

2 +σ2
p,2 hold, both EUCP

1 and EUCP
2

increase with αd for all αd ∈ [0,1]. This implies that EUCP given with (21) increases with αd for all αd ∈ [0,1], and thus,

EUCP reaches its maximum value when αd > 1, i.e., α∗d > 1.

Second, it follows from Lemma A2(c) that if |∆µ1| >
√
σ̄2

1 +σ2
p,1, and |∆µ2| >

√
σ̄2

2 +σ2
p,2 hold, both EUCP

1 and

EUCP
2 decrease with αd for all αd ∈

[
1,min

{
σ2
X+σ2

d,X

σ2
X

,
σ2
Y +σ2

d,Y

σ2
Y

}]
. This implies that EUCP given with (21) decreases

with αd for all αd ∈
[
1,min

{
σ2
X+σ2

d,X

σ2
X

,
σ2
Y +σ2

d,Y

σ2
Y

}]
, and thus, EUCP reaches its maximum value when αd < 1, i.e.,

α∗d < 1.

�
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B.2. Proof of Section 5 Results
B.2.1. Proof of Section 5.1 Results

The derivative of EUPM in (19) with respect to rX and rY are equal to

∂EUPM

∂rX
=
∂EUPM

∂σ̄

∂σ̄

∂rX
=
w̄2

2σ̄

∂EUPM

∂σ̄
and

∂EUPM

∂rY
=
∂EUPM

∂σ̄

∂σ̄

∂rY
=

(1− w̄)2

2σ̄

∂EUPM

∂σ̄
, (46)

where

∂EUPM

∂σ̄
=

(
∆µ2

αdσ̄2

(
1

αd
− 1

)
+ 1

)
φ

(
∆µ

αdσ̄

)
. (47)

Proof of Proposition 2: When rX = rY = 0, one can easily confirm from (18) and (19) that EUPM − EUSM = 0.

Furthermore, we observe from (46) and (47) that ∂EU
PM

∂rX
≥ 0 and ∂EUPM

∂rY
≥ 0 for αd = 1, i.e., EUPM increases with both

rX and rY when αd = 1. Since EUPM −EUSM = 0 for rX = rY = 0, and EUPM increases with rX and rY for αd = 1,

we have EUPM −EUSM ≥ 0 for rX ≥ 0 and rY ≥ 0. �

Proof of Proposition 3: (a) When rX = rY = 0, one can easily confirm from (18) and (19) that EUPM −EUSM = 0.

Furthermore, we observe from (46) and (47) that ∂EU
PM

∂rX
≥ 0 and ∂EUPM

∂rY
≥ 0 for αd < 1, i.e., EUPM increases with both

rX and rY when αd = 1. Since EUPM −EUSM = 0 for rX = rY = 0, and EUPM increases with rX and rY for αd < 1,

we have EUPM −EUSM ≥ 0 for rX ≥ 0 and rY ≥ 0.

(b) The proof consists of two parts: In part I, we will investigate the monotonicity/unimodality of EUPM with respect to

rX and rY , whereas in part II, we will analyze when PM outperforms SM.

Part I: Observe from (47) that when αd > 1, ∂EUPM

∂σ̄
< 0 for all σ̄ ∈

[
0,

√
∆µ2

αd

(
1− 1

αd

))
, and ∂EUPM

∂σ̄
> 0 for all

σ̄ >

√
∆µ2

αd

(
1− 1

αd

)
. Hence, EUPM is a unimodal function of σ̄, which reaches its minimum at σ̄=

√
∆µ2

αd

(
1− 1

αd

)
.

Hence, recalling the definition of σ̄ in (17), it follows that for a given rX , we have:
EUPM increases in rY for all rY ≥ 0, if rX > 1

w̄2
∆µ2

αd

(
1− 1

αd

)
,

EUPM decreases in rY for all rY ∈
[
0, 1

(1−w̄)2

(
∆µ2

αd

(
1− 1

αd

)
− w̄2rX

))
,

if rX < 1
w̄2

∆µ2

αd

(
1− 1

αd

)
.

and EUPM increases in rY for all rY ∈
(

1
(1−w̄)2

(
∆µ2

αd

(
1− 1

αd

)
− w̄2rX

)
,∞
)

,

Similarly, for a given rY , we have:
EUPM increases in rX for all rX ≥ 0, if rY > 1

(1−w̄)2
∆µ2

αd

(
1− 1

αd

)
,

EUPM decreases in rX for all rX ∈
[
0, 1

w̄2

(
∆µ2

αd

(
1− 1

αd

)
− (1− w̄)2rY

))
,

if rY < 1
(1−w̄)2

∆µ2

αd

(
1− 1

αd

)
.

and EUPM increases in rX for all rX ∈
(

1
w̄2

(
∆µ2

αd

(
1− 1

αd

)
− (1− w̄)2rY

)
,∞
)

,

Part II: One can easily confirm from (18) and (19) that when σ̄ = 0, we have EUPM −EUSM = 0. Furthermore, as σ̄

tends to∞, EUPM −EUSM goes to∞. Since EUPM is a unimodal function of σ̄, i.e., it first decreases, then increases

in σ̄ (recall part I), it follows that there exists a unique threshold ψ such that if σ̄ < ψ, we have EUPM <EUSM , and if
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σ̄ > ψ, we have EUPM >EUSM . This, together with the definition of σ̄ in (17), implies that for a given rX , we have:
EUPM >EUSM for all rY ≥ 0, if rX > ψ2

w̄2 ,

EUPM <EUSM for all rY ∈
[
0, ψ

2−w̄2rX
(1−w̄)2

)
,

if rX < ψ2

w̄2 .
and EUPM >EUSM for all rY ∈

(
ψ2−w̄2rX

(1−w̄)2
,∞
)

,

Similarly, for a given rY , we have:
EUPM >EUSM for all rX ≥ 0, if rY > ψ2

(1−w̄)2
,

EUPM <EUSM for all rX ∈
[
0, ψ

2−(1−w̄)2rY
w̄2

)
,

if rX < ψ2

(1−w̄)2
.

and EUPM >EUSM for all rX ∈
(
ψ2−(1−w̄)2rY

w̄2 ,∞
)

,

ψX =
(ψ2− w̄2rX)

+

(1− w̄)2
, and ψY =

(ψ2− (1− w̄)2rY )
+

w̄2
,

where x+ denotes max{x,0}. Using these definitions of ψX and ψY , we conclude that for a fixed rY (rX), EUPM ≥

EUSM if and only if rX ≥ψX (rY ≥ψY ). �

B.2.2. Proof of Section 5.2 Results

For the proof of Propositions 4 and 5, we first need the following lemma to establish the structure of EUCP
i given with

(23) with respect to σ̄i given with (17), rX and rY .

Lemma A3 Consider EUPC
i and EUCP

i given with (22) and (23), respectively. Then:

(a) EUCP
i is quasiconvex in σ̄i.

(b) If |∆µi|<
√

2σ2
p,i/αd, then (i) EUCP

i increases in rX , and rY , and (ii) EUCP
i ≥EUPC

i holds for all rX , rY ≥ 0.

(c) Let |∆µi|>
√

2σ2
p,i/αd and let τi denote the unique value of σ̄i that satisfies the following equation:6

∆µ2
iαd

(
αdσ̄

2
i

α2
dσ̄

2
i +σ2

p,i

− 1

)
+α2

dσ̄
2
i + 2σ2

p,i = 0. (48)

Then:

(i) EUCP
i decreases in σ̄i if σ̄i < τi, and it increases in σ̄i if σ̄i > τi.

(ii) There exists a unique threshold ηi such that EUCP
i <EUPC

i if σ̄i < ηi, and EUCP
i >EUPC

i if σ̄i > ηi.

Proof of Lemma A3: (a) The derivative of EUCP
i in (23) with respect to rX and rY are equal to

∂EUCP
i

∂rX
=
∂EUCP

i

∂σ̄i

∂σ̄i
∂rX

=
w2
i

2σ̄i

∂EUCP
i

∂σ̄i
and

∂EUCP
i

∂rY
=
∂EUCP

i

∂σ̄i

∂σ̄i
∂rY

=
(1−wi)2

2σ̄

∂EUCP
i

∂σ̄i
, (49)

where

∂EUCP
i

∂σ̄i
=

αdσ̄i(
α2
dσ̄

2
i +σ2

p,i

)3/2 [∆µ2
iαd

(
αdσ̄

2
i

α2
dσ̄

2
i +σ2

p,i

− 1

)
+α2

dσ̄
2
i + 2σ2

p,i

]
φ

(
∆µi√

α2
dσ̄

2
i +σ2

p,i

)
. (50)

One can easily confirm in (50) that ∆µ2
iαd

(
αdσ̄

2
i

α2
d
σ̄2
i
+σ2

p,i
− 1
)

+α2
dσ̄

2
i +2σ2

p,i increases in σ̄i, and thus,EUCP
i is quasiconvex

in σ̄i.

6We show the existence and uniqueness of τi in the proof.
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(b) Part (i): First note that, if |∆µi| <
√

2σ2
p,i

αd
holds, ∂EUCPi

∂σ̄i
> 0 at σ̄i = 0. Then, EUCP

i increases in σ̄i for all σ̄i ≥ 0

since EUCP
i is quasiconvex in σ̄i by part (a) of this lemma. This implies that EUCP

i increases with both rX and rY (recall

from (17) that σ̄i is an increasing function of both rX and rY ).

Part (ii): When rX = rY = 0, one can easily confirm from (22) and (23) thatEUCP
i −EUPC

i = 0. SinceEUCP
i −EUPC

i =

0 for rX = rY = 0, and EUCP
i increases with rX and rY as per part I, we have EUCP

i −EUPC
i ≥ 0 for all rX ≥ 0 and

rY ≥ 0.

(c) Part (i): First note that, if |∆µi|>
√

2σ2
p,i

αd
holds, ∂EU

CP
i

∂σ̄i
< 0 at σ̄i = 0. On the other hand, ∂EU

CP
i

∂σ̄i
tends to zero from

positive values as σ̄i tends to∞. Then, by Intermediate Value Theorem, there exists a value of σ̄i > 0, denoted by τi, that

satisfies ∂EUCPi
∂σ̄i

= 0, or, equivalently, (48). Moreover, since EUCP
i is quasiconvex in σ̄i by part (a) of this lemma, τi is

unique and EUCP
i decreases with σ̄i for all σ̄i ∈ [0, τi), and it increases with σ̄i for all σ̄i > τi.

Part (ii): One can easily confirm from (22) and (23) that when σ̄i = 0, we have EUCP
i −EUPC

i = 0. Furthermore, as σ̄i

tends to∞, EUCP
i −EUPC

i goes to∞. Since EUCP
i first decreases, then increases in σ̄i (recall part I), it follows that

there exists a unique threshold ηi such that if σ̄i < ηi, we have EUCP
i <EUPC

i , and if σ̄i > ηi, we have EUCP
i >EUPC

i .

�

Now, we are ready to prove Propositions 4 and 5 using Lemma A3.

Proof of Proposition 4: First, it follows from part (i) of Lemma A3(b) that if |∆µ1| <
√

2σ2
p,1/αd and |∆µ2| <√

2σ2
p,2/αd hold, both EUCP

1 and EUCP
2 increase with rX and rY for all rX , rY ≥ 0. This implies that EUCP given with

(21) increases with rX and rY for all rX , rY ≥ 0.

Second, it follows from part (ii) of Lemma A3(b) that if |∆µ1|<
√

2σ2
p,1/αd and |∆µ2|<

√
2σ2

p,2/αd hold, we have

EUCP
1 ≥EUPC

1 andEUCP
2 ≥EUPC

2 . Then, recalling (20) and (21), we conclude thatEUCP ≥EUPC for all rX , rY ≥ 0.

�

Proof of Proposition 5: (a) First, it follows from part (i) of Lemma A3(c) that if |∆µ1| >
√

2σ2
p,1/αd and |∆µ2| >√

2σ2
p,2/αd hold, and if σ̄1 > τ1 and σ̄2 > τ2, EUCP

1 and EUCP
2 increase with σ̄1 and σ̄2, respectively. Recalling from

(17) that both σ̄1 and σ̄2 increase with rX and rY , this means that when |∆µ1|>
√

2σ2
p,1/αd and |∆µ2|>

√
2σ2

p,2/αd,

both EUCP
1 and EUCP

2 increase with rX and rY for all rX , rY ≥ 0 satisfying w2
1rX + (1−w1)2rY > τ

2
1 and w2

2rX + (1−

w2)2rY > τ
2
2 . Then, from (21), it follows that EUCP increases with rX and rY for all rX , rY ≥ 0 satisfying w2

1rX + (1−

w1)2rY > τ
2
1 and w2

2rX + (1−w2)2rY > τ
2
2 , i.e., for sufficiently large rX and rY .

Second, it follows from part (ii) of Lemma A3(c) that if |∆µ1|>
√

2σ2
p,1/αd and |∆µ2|>

√
2σ2

p,2/αd hold, and if σ̄1 >

η1 and σ̄2 > η2, we haveEUCP
1 >EUPC

1 andEUCP
2 >EUPC

2 . Recalling (17), this means that when |∆µ1|>
√

2σ2
p,1/αd

and |∆µ2| >
√

2σ2
p,2/αd, we have EUCP

1 > EUPC
1 and EUCP

2 > EUPC
2 for all rX , rY ≥ 0 satisfying w2

1rX + (1 −

w1)2rY > η
2
1 and w2

2rX + (1−w2)2rY > η
2
2 . Then, from (20) and (21), it follows that EUCP >EUPC for all rX , rY ≥ 0

satisfying w2
1rX + (1−w1)2rY > τ

2
1 and w2

2rX + (1−w2)2rY > τ
2
2 , i.e., for sufficiently large rX and rY .

(b) First, it follows from part (i) of Lemma A3(c) that if |∆µ1| >
√

2σ2
p,1/αd and |∆µ2| >

√
2σ2

p,2/αd hold, and if

σ̄1 < τ1 and σ̄2 < τ2, EUCP
1 and EUCP

2 decrease with σ̄1 and σ̄2, respectively. Recalling from (17) that both σ̄1 and σ̄2

increase with rX and rY , this means that when |∆µ1| >
√

2σ2
p,1/αd and |∆µ2| >

√
2σ2

p,2/αd, both EUCP
1 and EUCP

2

decrease with rX and rY for all rX , rY ≥ 0 satisfying w2
1rX + (1−w1)2rY < τ 2

1 and w2
2rX + (1−w2)2rY < τ 2

2 . Then,
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from (21), it follows that EUCP decreases with rX and rY for all rX , rY ≥ 0 satisfying w2
1rX + (1−w1)2rY < τ 2

1 and

w2
2rX + (1−w2)2rY < τ

2
2 , i.e., for sufficiently low rX and rY .

Second, it follows from part (ii) of Lemma A3(c) that if |∆µ1|>
√

2σ2
p,1/αd and |∆µ2|>

√
2σ2

p,2/αd hold, and if σ̄1 <

η1 and σ̄2 < η2, we haveEUCP
1 <EUPC

1 andEUCP
2 <EUPC

2 . Recalling (17), this means that when |∆µ1|>
√

2σ2
p,1/αd

and |∆µ2| >
√

2σ2
p,2/αd, we have EUCP

1 < EUPC
1 and EUCP

2 < EUPC
2 for all rX , rY ≥ 0 satisfying w2

1rX + (1 −

w1)2rY < η
2
1 and w2

2rX + (1−w2)2rY < η
2
2 . Then, from (20) and (21), it follows that EUCP <EUPC for all rX , rY ≥ 0

satisfying w2
1rX + (1−w1)2rY < η

2
1 and w2

2rX + (1−w2)2rY < η
2
2 , i.e., for sufficiently low rX and rY .

(c) One can numerically check that when p = 0.5, w1 = 0.75, w2 = 0.25, ∆µ1 = 1.25, ∆µ2 = −4.25, σp,1 = σp,2 = 1,

αd = 1.5, rX = 0.5705, the optimal prognosis-to-treatment process is CP at rY = 0.1105, it is PC at rY = 5.4424, whereas

the optimal process switches back to CP at rY = 20.1038. �

B.3. Proof of Section 6 Results

For the proof of Proposition 6, we first need the following lemma to establish the monotonicity of EUPC and EUCP in

(21) and (20) with respect to σp,1 and σp,2.

Lemma A4 (a) ∂EUPC

∂σp,1
< 0 and ∂EUPC

∂σp,2
< 0 for all σp,1, σp,2 ≥ 0.

(b) For ∂EUCP

∂σp,1
and ∂EUCP

∂σp,2
, we have:

(i) If αd ≥ 1 or if αd < 1 and ∆µ2
1 ≤

α2
d

1−αd
σ̄2

1 , we have ∂EUCP

∂σp,1
< 0 for all σp,1 ≥ 0, whereas if αd < 1 and ∆µ2

1 >

α2
d

1−αd
σ̄2

1 , we have ∂EUCP

∂σp,1
< 0 if and only if σp,1 ≥

√
αdσ̄2

1

∆µ2
1

∆µ2
1+αdσ̄

2
1
−α2

dσ̄
2
1 .

(ii) If αd ≥ 1 or if αd < 1 and ∆µ2
2 ≤

α2
d

1−αd
σ̄2

2 , we have ∂EUCP

∂σp,2
< 0 for all σp,2 ≥ 0, whereas if αd < 1 and ∆µ2

2 >

α2
d

1−αd
σ̄2

2 , we have ∂EUCP

∂σp,2
< 0 if and only if σp,2 ≥

√
αdσ̄2

2

∆µ2
2

∆µ2
2+αdσ̄

2
2
−α2

dσ̄
2
2 .

Proof of Lemma A4: (a) The derivative of EUPC with respect to σp,1 and σp,2 are:

∂EUPC

∂σp,1
=−∆µ2

1

σ2
p,1

φ

(
∆µ1

σp,1

)
< 0, and

∂EUPC

∂σp,2
=−∆µ2

2

σ2
p,2

φ

(
∆µ2

σp,2

)
< 0.

(b) We will prove only part (i). The proof of part (ii) follows the same lines and thus, we skip it. The derivative of EUCP

with respect to σp,1 is:

∂EUCP

∂σp,1
=

σp,1(
α2
dσ̄

2
1 +σ2

p,1

)3/2 [∆µ2
1

(
αdσ̄

2
1

α2
dσ̄

2
1 +σ2

p,1

− 1

)
−αdσ̄2

1

]
φ

(
∆µ1√

α2
dσ̄

2
1 +σ2

p,1

)
. (51)

We consider the following two cases:

Case 1: αd ≥ 1. One can easily confirm in (51) that when αd ≥ 1, ∂EU
CP

∂σp,1
< 0 holds for all σp,1 ≥ 0.

Case 2: αd < 1. One can easily confirm in (51) that ∆µ2
1

(
αdσ̄

2
1

α2
d
σ̄2

1+σ2
p,1
− 1
)
−αdσ̄2

1 decreases in σp,1, and thus, EUCP is

quasiconcave in σp,1. Now, we consider the following two subcases:

Case 2a: ∆µ2
1 ≤

α2
d

1−αd
σ̄2

1 . First note that, if ∆µ2
1 ≤

α2
d

1−αd
σ̄2

1 holds, ∂EU
CP

∂σp,1
≤ 0 at σp,1 = 0. Then, EUCP decreases in σp,1

for all σp,1 ≥ 0 since EUCP is quasiconcave in σp,1.

Case 2b: ∆µ2
1 >

α2
d

1−αd
σ̄2

1 . First note that, if ∆µ2
1 >

α2
d

1−αd
σ̄2

1 holds, ∂EUCP

∂σp,1
> 0 at σp,1 = 0. Furthermore, ∂EUCP

∂σp,1

tends to zero from negative values as σp,1 tends to ∞. Then, since EUCP is quasiconcave in σp,1, noting that ∂EUCP

∂σp,1

becomes equal to zero at σp,1 =
√
αdσ̄2

1

∆µ2
1

∆µ2
1+αdσ̄

2
1
−α2

dσ̄
2
1 , we conclude that EUCP increases with σp,1 for all σp,1 ∈[

0,
√
αdσ̄2

1

∆µ2
1

∆µ2
1+αdσ̄

2
1
−α2

dσ̄
2
1

)
, and it decreases with σp,1 for all σp,1 >

√
αdσ̄2

1

∆µ2
1

∆µ2
1+αdσ̄

2
1
−α2

dσ̄
2
1 .
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We also need to establish the monotonicity of EUPC and EUCP in (21) and (20) with respect to dp.

Lemma A5 Let us set β1 =
αdσ̄

2
1

α2
d
σ̄2

1+σ2
p,1

, and β2 =
αdσ̄

2
2

α2
d
σ̄2

2+σ2
p,2

. Then:

(a) EUPC increases in dp.

(b) EUCP increases in dp if we have either (i) β1 ≤ 2, and β2 ≤ 2, or (ii) β1 > 2, or β2 > 2, and dp is sufficiently large.

Proof of Lemma A5: We introduce a new parameter a≥ 0, and express µXA−µXB and µY A−µY B in terms of a in the

following form:

µXA−µXB = ∆µ+
a

w̄
, and µY A−µY B = µ− a

1− w̄
, (52)

where w̄ is given with (2) and ∆µ is given with (16). Since, ∆µ < 0, µXA > µXB and µY A < µY B by assumption, we

need to have ∆µ+ a
w̄
> 0⇔ a >−w̄∆µ. Replacing µXA − µXB and µY A − µY B in (3) and (4) with the expressions in

(52), ∆µ1, ∆µ2 and dp could be written in terms of ∆µ and a as:

∆µ1 = ∆µ+
(w1−w2)(1− p)

w̄(1− w̄)
a, ∆µ2 = ∆µ− (w1−w2)p

w̄(1− w̄)
a, and dp =

(w1−w2)

w̄(1− w̄)
a. (53)

Since we have ∆µ1 > 0 and ∆µ2 < 0 by assumption, we need to have ∆µ+ (w1−w2)(1−p)
w̄(1−w̄)

a> 0⇔ a> −w̄(1−w̄)∆µ

(w1−w2)(1−p) . Note

that we analyze the effect of a change in dp by varying a while keeping p, w1, w2, and w̄ constant.

(a) When we replace ∆µ1 and ∆µ2 in EUPC in (20) with the expressions in (53), and take the derivative of EUPC with

respect to a, we have:

∂EUPC

∂a
=
p(1− p)(w1−w2)

w̄(1− w̄)

[
Φ

(
∆µ1

σp,1

)
+

∆µ1

σp,1
φ

(
∆µ1

σp,1

)
−Φ

(
∆µ2

σp,2

)
− ∆µ2

σp,2
φ

(
∆µ2

σp,2

)]
≥ 0,

where ∆µ1 and ∆µ2 are given with (53), and the inequality follows from ∆µ2 < 0<∆µ1.

(b) The derivative of EUCP in (21) with respect to a is:

∂EUCP

∂a
=
p(1− p)(w1−w2)

w̄(1− w̄)

[(
Φ

(
∆µ1√

α2
dσ̄

2
1 +σ2

p,1

)
+

∆µ1√
α2
dσ̄

2
1 +σ2

p,1

(
1− αdσ̄

2
1

α2
dσ̄

2
1 +σ2

p,1

)
φ

(
∆µ1√

α2
dσ̄

2
1 +σ2

p,1

))

−

(
Φ

(
∆µ2√

α2
dσ̄

2
2 +σ2

p,2

)
+

∆µ2√
α2
dσ̄

2
2 +σ2

p,2

(
1− αdσ̄

2
2

α2
dσ̄

2
2 +σ2

p,2

)
φ

(
∆µ2√

α2
dσ̄

2
2 +σ2

p,2

))]
,

where ∆µ1 and ∆µ2 are given with (53). Setting z1 = ∆µ1√
α2
d
σ̄2

1+σ2
p,1

and z2 = ∆µ2√
α2
d
σ̄2

2+σ2
p,2

, and recalling that β1 =

αdσ̄
2
1

α2
d
σ̄2

1+σ2
p,1

, and β2 =
αdσ̄

2
2

α2
d
σ̄2

2+σ2
p,2

, we can rewrite ∂EUCP

∂a
as:

∂EUCP

∂a
=
p(1− p)(w1−w2)

w̄(1− w̄)

[
H(z1, β1)−H(z2, β2)

]
, (54)

where H(z,β) is equal to:

H(z,β) = Φ(z) + z(1−β)φ(z). (55)

To investigate the sign of ∂EUCP

∂a
we consider the following three cases:

Case 1: β1 ≤ 1 and β2 ≤ 1. Since ∆µ2 < 0<∆µ1, one can directly confirm in (55) and (54) that we have ∂EUCP

∂a
> 0.

Case 2: β1 ≤ 2, β2 ≤ 2, and β1 > 1 or β2 > 1. First, note that when αd ≥ 0.5, β1 ≤ 2 and β2 ≤ 2 immediately holds, i.e.,

αd ≥ 0.5 is a sufficient condition for β1 ≤ 2 and β2 ≤ 2. Without loss of generality, assume that β1 <β2. Then, ∂EU
CP

∂a
in

(54) could be rewritten as:

∂EUCP

∂a
=
p(1− p)(w1−w2)

w̄(1− w̄)

[
H(z1, β2)−H(z2, β2) + z1(β2−β1)φ(z1)

]
. (56)
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Since for 1< β ≤ 2, H(z,β) increases in z as per Claim 1(a) proved at the end of this lemma and z2 < 0< z1 holds, we

have H(z1, β2)>H(z2, β2). Then, in (56), ∂EU
CP

∂a
> 0 follows (recall that β2 >β1 and z1 > 0).

Case 3: β1 > 2 or β2 > 2. Without loss of generality, we again assume that β1 < β2. Then, ∂EUCP

∂a
in (54) could be

rewritten as:

∂EUCP

∂a
=
p(1− p)(w1−w2)

w̄(1− w̄)

[
(H(z1, β2)− 1/2)− (H(z2, β2)− 1/2) + z1(β2−β1)φ(z1)

]
. (57)

As per part (ii) of Claim 1(b) proved at the end of this lemma, for a given β > 2, H(z,β)− 1/2≥ 0 for z ≥ ζ2(β), i.e.,

for sufficiently large z, whereas H(z,β)− 1/2 < 0 for z < ζ1(β), i.e., for sufficiently low z. Then, if z1 ≥ ζ2(β2) and

z2 ≤ ζ1(β2), i.e., a is sufficiently large, we have H(z1, β2)− 1/2> 0>H(z2, β2)− 1/2, and thus, in (57), ∂EU
CP

∂a
> 0

follows (recall that β2 >β1 and z1 > 0).

Claim 1: Consider H(z,β) given with (55).

(a) For a given β ∈ (1,2], H(z,β) increases in z for all z ∈R.

(b) For a given β ∈ (2,∞), we have:

(i) H(z,β) increases in z for all z ∈
(
−∞,−

√
β−2

β−1

]
∪
[√

β−2

β−1
,∞
)

, whereas it decreases in z for all z ∈(
−
√

β−2

β−1
,
√

β−2

β−1

)
.

(ii) There exist two threshold ζ1(β) and ζ2(β) with ζ1(β) < 0 < ζ2(β) such that H(z,β) − 1/2 < 0 for all z ∈

(−∞, ζ1(β))∪ (0, ζ2(β)) and H(z,β)− 1/2≥ 0 for all z ∈ [ζ1(β),0]∪ [ζ2(β),∞).

Proof: The derivative of H(z,β) with respect to z is:

∂H(z,β)

∂z
=
[
2−β− z2(1−β)

]
φ(z). (58)

(a) One can easily confirm in (58) that when 1<β ≤ 2, ∂H(z,β)

∂z
≥ 0 for all z ∈R.

(b) Part (i): It is straightforward to establish from (58) that the roots of ∂H(z,β)

∂z
are z =−

√
β−2

β−1
and z =

√
β−2

β−1
. Further-

more, as z tends to−∞ or∞,H(z,β) goes to nonnegative values. Hence, ∂H(z,β)

∂z
> 0 for all z <−

√
β−2

β−1
and z >

√
β−2

β−1
,

whereas ∂H(z,β)

∂z
< 0 for all z with −

√
β−2

β−1
< z <

√
β−2

β−1
.

Part (ii): First, note that H(z,β)−1/2 goes to -1/2 as z tends to−∞, it goes to 1/2 as z tends to∞, whereas it is equal to

0 at z = 0. Furthermore, part (i) implies that for z ∈ (−∞,0], H(z,β)− 1/2 first increases, then decreases in z, whereas

for z ∈ [0,∞), H(z,β)− 1/2 first decreases, then increases in z. Thus, for a given β > 2, there exist two threshold ζ1(β)

and ζ2(β) with ζ1(β)< 0< ζ2(β) such thatH(z,β)−1/2< 0 for all z ∈ (−∞, ζ1(β))∪(0, ζ2(β)) andH(z,β)−1/2≥ 0

for all z ∈ [ζ1(β),0]∪ [ζ2(β),∞).

�

Now, we are ready to prove Proposition 6 using Lemmas A4 and A5.

Proof of Proposition 6: (a) Let σp,1 and σp,2 be fixed. First, note that EUPC −EUSM tends to∞ as dp goes to infin-

ity. Since EUPC increases in dp as per Lemma A5(a), we conclude that there exists a unique nonnegative threshold

f(σp,1, σp,2) such that EUPC −EUSM > 0 if and only if dp > f(σp,1, σp,2). In particular, f(σp,1, σp,2) is the value of dp

which satisfies

EUPC −EUSM = 0. (59)
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Applying implicit differentiation to (59), the derivative of f(σp,1, σp,2) with respect to σp,1 is:

∂f(σp,1, σp,2)

∂σp,1
=−

∂(EUPC−EUSM )

∂σp,1

∂(EUPC−EUSM )

∂dp

> 0, for all dp, σp,1, σp,2 ≥ 0,

where the inequality follows since ∂(EUPC−EUSM )

∂σp,1
< 0 as per Lemma A4(a), and ∂(EUPC−EUSM )

∂dp
> 0 as per

LemmaA5(a). Hence, Using tf(σp,1, σp,2) increases in σp,1. he same discussion, one can also show that ∂f(σp,1,σp,2)

∂σp,2
> 0

holds for all σp,2 ≥ 0.

(b) Let σp,1 and σp,2 be fixed. First, note that EUCP −EUPM tends to∞ as dp goes to infinity. We consider the following

four cases:

Case 1: αd ≥ 1. Note that when αd ≥ 1, we have β1 =
αdσ̄

2
1

α2
d
σ̄2

1+σ2
p,1
≤ 1, and β2 =

αdσ̄
2
2

α2
d
σ̄2

2+σ2
p,2
≤ 1. Since when β1, β2 ≤ 2,

EUCP increases in dp as per part (i) of Lemma A5(b), we conclude that there exists a unique nonnegative threshold

g(σp,1, σp,2) such that EUCP − EUPM > 0 if and only if dp > g(σp,1, σp,2). Furthermore, since when αd ≥ 1, EUCP

decreases in σp,1 and σp,2 for all σp,1, σp,2 ≥ 0 as per Lemma A4(b), g(σp,1, σp,2) increases in σp,1 and σp,2 for all

σp,1, σp,2 ≥ 0.

Case 2: 0.5 ≤ αd < 1. Note that when αd ≥ 0.5, we have β1 =
αdσ̄

2
1

α2
d
σ̄2

1+σ2
p,1
≤ 2, and β2 =

αdσ̄
2
2

α2
d
σ̄2

2+σ2
p,2
≤ 2. Since when

β1, β2 ≤ 2, EUCP increases in dp as per part (i) of Lemma A5(b), we conclude that there exists a unique nonnegative

threshold g(σp,1, σp,2) such that EUCP −EUPM > 0 if and only if dp > g(σp,1, σp,2). Furthermore, when αd < 1, as per

Lemma A4(b), EUCP decreases in σp,1 and σp,2 if and only if σp,1 and σp,2 are sufficiently large.7 Hence, we conclude

that g(σp,1, σp,2) increases in σp,1 and σp,2 if and only if σp,1 and σp,2 are large enough.

Case 3: 0 ≤ αd < 0.5 and β1 =
αdσ̄

2
1

α2
d
σ̄2

1+σ2
p,1
≤ 2, and β2 =

αdσ̄
2
2

α2
d
σ̄2

2+σ2
p,2
≤ 2. In this case, we reach the same conclusion

as Case 2, i.e., there exists a unique nonnegative threshold g(σp,1, σp,2) such that EUCP − EUPM > 0 if and only if

dp > g(σp,1, σp,2). Furthermore, g(σp,1, σp,2) increases in σp,1 and σp,2 if and only if σp,1 and σp,2 are large enough.

Case 4: 0 ≤ αd < 0.5 and β1 =
αdσ̄

2
1

α2
d
σ̄2

1+σ2
p,1

> 2, or β2 =
αdσ̄

2
2

α2
d
σ̄2

2+σ2
p,2

> 2. Since when β1 > 2 or β2 > 2, EUCP increases

in dp for sufficiently large dp as per part (ii) of Lemma A5(b), we conclude that there exists a nonnegative threshold

g(σp,1, σp,2) such thatEUCP −EUPM > 0 if dp > g(σp,1, σp,2). Furthermore, when αd < 1, as per Lemma A4(b),EUCP

decreases in σp,1 and σp,2 if and only if σp,1 and σp,2 are sufficiently large.7 Hence, we conclude that g(σp,1, σp,2) increases

in σp,1 and σp,2 if and only if σp,1 and σp,2 are large enough. �

B.4. Proof of Section 7 Results

Proof of Corollary 1: (a) It follows directly from Proposition 3(b) and Proposition 6.

(b) It follows directly from Proposition 1(a), Proposition 2, and Proposition 6.

7 In particular, if ∆µ2
1 ≤ α2

d
1−αd

σ̄2
1

(
∆µ2

2 ≤
α2
d

1−αd
σ̄2

2

)
, EUCP decreases in σp,1 (σp,2) for all σp,1 ≥ 0 (σp,2 ≥ 0),

whereas if ∆µ2
1 >

α2
d

1−αd
σ̄2

1

(
∆µ2

2 >
α2
d

1−αd
σ̄2

2

)
, EUCP decreases in σp,1 (σp,2) for all σp,1 ≥

√
αdσ̄2

1
∆µ2

1

∆µ2
1+αdσ̄

2
1
−α2

dσ̄
2
1 (σp,2 ≥√

αdσ̄2
2

∆µ2
2

∆µ2
2+αdσ̄

2
2
−α2

dσ̄
2
2 .
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(c) As per Proposition 6, when dp is large relative to σp,1 and σp,2, patient participation is beneficial, i.e., PC and CP

outperform SM and PM. Hence, for high dp values, it is enough to compare PC and CP. Recall from (15) that high dp

implies high |∆µ1| and |∆µ2|. And, when |∆µ1| and |∆µ2| are large, PC is most valuable relative to CP for αd > 1 as per

Proposition 1(b), and for moderate rX and rY as per Proposition 5(b).

(d) As per Proposition 6, when dp is large relative to σp,1 and σp,2, patient participation is beneficial, i.e., PC and CP

outperform SM and PM. Hence, for high dp values, it is enough to compare PC and CP. Recall from (15) that high dp

implies high |∆µ1| and |∆µ2|. And, when |∆µ1| and |∆µ2| are large, CP is most valuable relative to PC for αd < 1 as per

Proposition 1(b), and for high rX and rY as per Proposition 5(a).
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