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Service providers often share delay information, in the form of delay announcements, with their customers.

In practice, simple delay announcements, such as average waiting times or a weighted average of previously

delayed customers, are often used. Our goal in this paper is to gain insight into when such announcements

perform well. Specifically, we compare the accuracies of two announcements: (i) a static announcement which

does not exploit real-time information about the state of the system, and (ii) a dynamic announcement,

specifically the last-to-enter-service (LES) announcement, which equals the delay of the last customer to have

entered service at the time of the announcement. We propose a novel correlation-based approach which is

theoretically appealing because it allows for a comparison of the accuracies of announcements across different

queueing models, including multi-class models with a priority service discipline. It is also practically useful

because estimating correlations is much easier than fitting an entire queueing model. Using a combination

of queueing-theoretic analysis, real-life data analysis, and simulation, we analyze the performance of static

and dynamic announcements, and derive an appropriate weighted average of the two which we demonstrate

has a superior performance using both simulation and data from a call center.
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1. Introduction

In this paper, we consider service systems where information about upcoming delays is shared

with customers, in the form of delay announcements. In practice, simple, easy-to-implement, static

announcements, such as average waiting times over a long period, are predominately used, e.g., in

hospitals1, retail stores2, and immigration and border controls3. The prevalence of average-wait-

1 http://www.bayareahospital.org/Emergency-Department-Wait-Times.aspx

2 http://appreviewtimes.com/

3 http://www.cbsa-asfc.gc.ca/bwt-taf/
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time announcements is the main motivation behind this paper. We refer to these announcements as

static, as they change relatively slowly over time, and do not use real-time system-state information.

Since static announcements are so common, it is natural to investigate when they would be

accurate in predicting customer delay, in real time, relative to dynamic announcements. In this

paper, we compare the accuracies of static and delay-history-based dynamic announcements, where

the latter is based on information about the recent history of delays in the system at the time of

the announcement. Throughout this paper, we assume that a delay announcement is only made at

the arrival epoch of a delayed customer, and that the announcement is not updated thereafter.

1.1. Comparing Static and Delay-History-Based Announcements

We consider the Expected waiting time of delayed customers to be the static Announcement (EA),

and the delay of the Last-customer-to-have-Entered-Service (LES), at the time of arrival of the

current (delayed) customer, to be the simplified delay-history-based announcement, which is a

dynamic announcement. The LES announcement is appealing: It is simple, easy to calculate, and

robust, i.e., its implementation does not require knowledge of system parameters; see Ibrahim et al.

(2016) for background. In §3, by presenting statistical evidence, based on the analysis of a call-

by-call data set from an Israeli bank’s call center, we show that EA may indeed outperform the

LES announcement in practice. In other words, exploiting real-time information about the current

state of the system, via the delay of the last customer-to-have-entered-service, may not always be

the right thing to do. Thus, there is a need for a deeper investigation.

While we mainly focus on EA and the LES announcement in this paper, we do not claim

that these are the only announcements that are worth considering. For example, announcements

exploiting the queue-length seen upon arrival by delayed customers are natural candidates that have

been studied extensively in the literature, e.g., see Ibrahim (2010). The main takeaway from that

line of research is that, while queue-length-based predictions are generally superior when the queue

length is known and the rate at which customers enter service can be estimated reliably (so that

the expected waiting time conditional on the queue-length can be approximated), those predictions

may also fail spectacularly when incorrect assumptions are made about the underlying model;

e.g., see Figures 3 and 4 in Ibrahim and Whitt (2009a). Thus, delay-history-based predictions,

such as LES, may be preferred and should be studied as well. In this paper, we focus on those

announcements. For completeness, we also consider a data-based-queue-length announcement in

§6.3 where we estimate the rate at which customers enter service directly from data; we show that

this queue-length-based announcement is competitive but does not outperform WA, as defined

above. Importantly, our objective is to focus on reasonable, easy-to-implement announcements,

and to formulate a framework that enables cross-model assessment of the announcements.



Author: A correlation-based approach
Article submitted to Management Science; manuscript no. XXX 3

In this paper, we investigate the following questions: When does the LES announcement out-

perform the simple static announcement, EA? How do the LES announcement and EA perform in

realistic settings, such as systems with multiple customer types and a priority service discipline?

Importantly, how do the LES announcement and EA perform with real-life data, and can we design

a new prediction that consistently outperforms both?

1.2. The Role of Correlations

To help develop a service science, it is necessary to systematically study various delay predictors in

controlled environments, i.e., in structured mathematical models. Indeed, the standard approach,

in the extant literature, has been to consider specific queueing models, which capture several real-

istic phenomena, and to study various ways of predicting delays in those models (Whitt (1999),

Jouini et al. (2009) and Ibrahim (2010)). As such, the practical validity of various wait-time pre-

dictions remains intimately tied to the appropriateness of the technical conditions, e.g., specific

distributional assumptions on underlying processes, under which they were studied. However, test-

ing whether such technical modeling assumptions hold with real-life data is not a trivial task. Thus,

there remains a need to develop a systematic and practically useful way to assess the accuracies

of delay predictors across different queueing models. Herein lies one of the main contributions of

our work: In order to study the accuracies of the LES announcement and EA, we propose a new

“correlation-based” approach which enables, in a simple way, a cross-model assessment.

1.3. Specific Contributions

In this paper, we rely on a three-fold methodology: (i) an empirical study of real-life data for an

understanding of practical performance; (ii) a queueing-theoretic mode of analysis for the derivation

of structural results and related insights; and (iii) a detailed simulation study for additional support.

We develop a new framework to compare the accuracies of the LES announcement, or any

other state-dependent (dynamic) announcement, and EA. Specifically, we show that the correlation

between LES announcements and corresponding customer delays plays a key role. In particular, we

derive the following result: Under the MSE criterion for accuracy, an unbiased dynamic prediction,

such as the LES announcement, is less accurate than the EA prediction if, and only if, the corre-

lation between the dynamic announcements and corresponding customer waiting times is less than

1/2. This result applies broadly, irrespective of the specific queueing model at hand, provided that

some mild conditions are satisfied. This is even the case in systems where customers respond to the

announcements, e.g., as in Ibrahim et al. (2016), although this is not our main focus in this paper.

This result also applies to announcements which are based on the queue-length information, which

we do not focus on in this paper. For the LES announcement, we demonstrate that those condi-

tions are indeed satisfied in several queueing models, provided that the system is sufficiently large.
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Because estimating correlations is much easier than assessing the goodness-of-fit of a queueing

model, our approach is a practically useful way to compare static and dynamic announcements.

Since doing direct analysis is prohibitively difficult, we rely on a many-server queueing-theoretic

mode of analysis to derive asymptotic expressions for correlations, which yield useful and remark-

ably simple approximations, which depend solely on the traffic intensities in the system. Specifically,

we consider Markovian queueing models, with or without abandonment, under both the first-come-

first-served (FCFS) and non-preemptive priority service disciplines. To the best of our knowledge,

there do not exist theoretical results quantifying the performance of the LES announcement in

systems with a priority service discipline, despite the prevalence of such systems in practice. State-

dependent delay prediction with a priority service discipline is hard primarily because the waiting

times of lower-priority customers depend on future higher-priority arrivals to the system. It is well

known that analyzing systems which exhibit such dependencies is typically a difficult task; see

Ward and Whitt (2000), Bitran and Caldentey (2002), and Armony and Maglaras (2004).

We develop our analysis further, and propose a new Weighted Average (WA) prediction, which

provably outperforms both the LES announcement and EA. We also characterise, analytically, the

improvement in prediction accuracy, in using WA, over both the LES and EA announcements. We

supplement our theoretical analysis with simulation to consider more general settings. In all cases

considered, WA has a superior performance over both the LES announcement and EA. Finally, we

apply our results to the data from two call centers, one which is of medium size and one which is

large. In both settings, we show that WA has a superior accuracy.

1.4. Organization

Here is how the rest of this paper is organized. In §2, we explain how our work fits into the

literature. In §3, we present preliminary results from our empirical study. In §4, we introduce our

correlation-based framework. In §5, we derive asymptotic results for correlations in many-server

queueing models. In §6, we describe results from a simulation study for robustness checks. Then,

we return to our real-life data, and test the performance of the WA, LES, and EA announcements

empirically. We present results from an additional real-life data set in the e-companion. We draw

conclusions in §7. We present proofs to some technical lemmas in the e-companion, and additional

numerical results in an online supplement to the main paper.

2. How Does This Paper Fit into the Literature?

This paper is most closely related to the literature on delay announcements in queueing systems. In

broad terms, this literature can be classified into four main categories depending on how customers

are assumed to treat the delay information: (i) customers are psychologically affected by the lengths

of their waiting times and the delay announcements that they receive; (ii) customers are strategic,
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forward-looking, utility-maximizing decision makers who respond to delay announcements and

decide, accordingly, whether to balk or join the system; (iii) customers are not decision makers,

yet their behaviors are exogenously affected by the announcements; and (iv) customers are queued

entities who do not respond to the announcements. For a recent survey of the papers in each

category, we refer the reader to Ibrahim (2018).

This paper falls into that fourth stream of literature. Specifically, we focus on the question of

accuracy of the announcements and assume that customers do not respond to the delay information.

The asymptotic accuracy of the LES prediction in large queueing systems is justified by supporting

heavy-traffic limit theorems, see Armony et al. (2009), Ibrahim and Whitt (2009a), and Ibrahim

et al. (2016), albeit in the context of heavily-congested Markovian queueing systems, in steady

state, with a single customer class and a FCFS service discipline. The LES prediction has also been

shown to be systematically biased, leading to inaccurate announcements, with time-varying arrival

rates which cause systematic variations in delays over time (Ibrahim and Whitt 2011). The study

of delay prediction in multi-class settings (but not of the LES announcement) has been considered

in both Nakibly (2002) and Jouini et al. (2009). However, our asymptotic mode of analysis and our

focus on the performance of delay-history-based predictions in multiclass settings, are different.

For a numerical study of the performance of LES and several LES-based predictions in multiclass

settings, see Thiongane et al. (2015). We present theoretical support to the numerical observations

in that paper. A closely related paper to ours is Shah et al. (2019), where the authors describe

results from a simulation study which extends our results, e.g., by quantifying the impact of using

future information for LES and considering an alternative Newsvendor-type error criterion. For an

empirical investigation of the (superior) performance of the LES announcement with real-life data,

see Senderovich et al. (2014 and 2015). In contrast, our data-based study focuses here on settings

where the LES announcement performs poorly relative to EA. Thus, the conclusions that we reach

are different. The inaccuracy of delay-history-based predictions, such as the LES announcement,

in certain settings has also been acknowledged in Yu et al. (2017), albeit in the context of a field

experiment to assess whether customers are loss averse in time, and how the delay announcement

made may impact such reference-dependent behavior. Recent papers such as Yu et al. (2016) and

Aksin et al. (2016) present data-driven models that capture the customer’s decision-making during

his/her wait, in response to updated announcements during their waiting time. We do not consider

such updated announcements in this paper.

Our proposed WA predictor, which is a weighted sum of the LES announcement and EA, is

in the same spirit as delay announcements which combine recent delay-history-based information

along with average wait-time predictions, as in Gal et al. (2017) and Ang et al. (2015). However,

our focus here is on analytically characterising the performance of the announcements, in addition
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to empirically investigating that performance, whereas the focus in those papers is on combin-

ing existing queueing-theoretic results and data-mining techniques to achieve superior predictive

power in more complicated settings (urban transportation and hospital emergency departments,

respectively). There are very few papers which consider an approach similar to ours, i.e., one

which combines mathematical analysis to investigate the accuracy of delay announcements with

an empirical validation of those analytical results. For example, Jouini et al. (2015) considers delay

prediction in a multi-class queue with a priority service discipline and time-varying arrival rates.

However, the focus of our paper, our queueing-asymptotic methodology, our consideration of the

LES predictor, and our main results, are all different from theirs. There are also recent papers which

adopt a structural estimation approach to modeled customer decisions with delay announcements,

e.g., see Akşin et al. (2016) and Yu et al. (2017).

There are several papers which study the impact of using real-time versus static delay informa-

tion, in problem settings which are different from ours. Armony and Maglaras (2004) studies joint

routing and delay-announcement decisions in the context of a call center which offers a call-back

option to delayed customers. There, the authors show that state-dependent information increases

resource utilization while improving the quality of service for real-time service. Singh et al. (2017)

considers a competitive environment with two service providers. They investigate, from the view-

point of a service provider who is competing for market share, the question of whether or not to

announce real-time delay information. Dong et al. (2018) studies the impact of delay announce-

ments on coordination in a network of hospitals. While the main focus of that paper is empirical,

the authors also describe simulation results which illustrate that using average-wait predictions

may lead to asynchronous behavior in the system; this numerical observation is subsequently inves-

tigated analytically in Pender et al. (2017), using an approximating fluid model.

We also note that there is a stream of literature that studies the effect of delay announcements in

the system by explicitly modelling the strategic behavior of customers in queues; e.g., we refer the

reader to Guo and Zipkin (2007) and Hu et al. (2018), and references therein. While the approach

in these papers is different from ours, their topic overlaps greatly with ours.

In this paper, we supplement the literature by proposing a new correlation-based framework

which allows for a broader understanding of performance across different queueing models. Through

our framework, we are able to provide a theoretical justification to earlier numerical and empirical

observations, e.g., in Thiongane et al. (2016) and Senderovich et al. (2014 and 2015). Importantly,

our framework can be useful in practice because estimating correlations is easier than fitting queue-

ing models to data. We also note that there are average predictions proposed in Thiongane et al.

(2016) that exploit the LES prediction, but that are different from the one we propose here.
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3. Preliminary Empirical Results

From a practical and empirical standpoint, there is some empirical evidence substantiating the good

performance of the LES announcement with real-life data in some cases; e.g., see Senderovich et al.

(2014), Senderovich et al. (2015), and Gal et al. (2017). In contrast, we begin here by presenting

conflicting empirical evidence which illustrates the poor accuracy of the LES announcement in

other cases, relative to the static announcement EA; we will return to this empirical evidence in

§6.2.1. For now, we illustrate that the LES announcement may indeed perform worse than EA.

3.1. Definitions: EA and LES Announcements

We denote by W∞ a random variable with the distribution of the steady-state virtual waiting time,

which is the waiting time experienced by an infinitely patient customer. The static announcement,

EA, is then given by E[W∞|W∞ > 0]. In our simulations, we use a point estimate of E[W∞|W∞ > 0]

for the EA announcement. In particular, we begin by discarding an initial transient period from our

simulation to ensure steady-state conditions. Then, we use the running average of virtual waiting

times (for delayed customers) as a point estimate of E[W∞|W∞ > 0]. With data, we approximate

EA by the average waiting time until abandonment or service, as described in §3.3.

For the LES announcement, we use the delay of the last customer to have entered service; if there

are multiple classes, then we use the delay of the LES customer from the same class as the delayed

customer to whom the announcement is made. We now formally define the LES announcement.

We let t denote the arrival time of a delayed customer, to whom a delay announcement is made,

in steady state. We denote the virtual waiting time of this new customer by W (t), and note that

W (t) has the same distribution as WD ≡ [W∞|W∞ > 0]. Let τt denote the arrival time of the

corresponding LES customer, whose delay was used in the announcement, i.e.,

τt = sup{s≤ t : There is an arrival at time s and s+W (s)≤ t}. (1)

Then, W (τt) is equal to the LES prediction. To quantify the accuracy of the LES announcement

and EA in our simulation experiments, we use the average-squared-error (ASE):

ASE ≡ 1

k

k∑
j=1

(aj − pj)2, (2)

where aj > 0 is the actual virtual delay of customer j, pj is his predicted delay, and k is the

number of customers in our sample. The ASE is a point estimate of the mean-squared error (MSE)

which is defined as the expected value of the square of the difference between the delay prediction

and the virtual delay. While the MSE is useful for an assessment of average performance, it is

also interesting to consider alternative error criteria which penalize over and under estimation of
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delays in a non-symmetric manner. We do so in §EC.6 and demonstrate that our correlation-based

framework extends to such criteria as well.

For a relative measure of performance, we calculate the percent relative-root-average-squared-

error (RASE), which is defined as the ratio between the square root of the ASE and the average

waiting time in the queue, in percent. The RASE is useful because it relates the errors in the LES

and EA announcements to the magnitude of experienced waiting times in the system.

3.2. Description of the Data

General setting. We consider the Israeli call-center data set which was analyzed in Brown et al.

(2005)4. The call center is small, consisting of at most 13 regular agents, and the call-by-call data

spans all 12 months of 1999. In each month, roughly 100,000-120,000 calls are made and 65,000-

85,000 of those calls terminated in the voice response unit (VRU). The remaining 30,000-40,000

calls per month were either served by an agent (80%) or abandoned before service (20%).

There are four main call types: Regular (PS), stock transaction (NE), new/potential customer

(NW), and internet assistance (IN)5. In what follows, we focus on the IN and PS call types; we

describe results for the remaining types in §EC.10.3 of the e-companion.

In the months of January to July, all calls were served by the same group of agents. However, in

the months of August to December, IN customers were served by a separate pool of agents. Thus, in

those later months, the call center effectively consists of two separate systems: A single-class, single-

priority, system for IN customers, and a multi-class two-priority system for all remaining types.

In particular, for PS callers, there are two priority levels, high and low. High-priority customers

are moved up the queue by subtracting 1.5 minutes from their arrival times. For both the IN and

PS types, we restrict attention to the months of August to December, because we are interested

in studying the accuracies of our announcements both with and without priorities. For PS calls,

which have a much greater volume than other classes, we focus on low-priority callers. There are

roughly 5,200 delayed IN callers and 16,000 delayed low-priority PS callers in our sample.

Customers receive delay announcements every 60 seconds, and they react to those announcements

by adjusting their patience levels accordingly; see Figure 5 in Brown et al. (2005). We focus on

regular weekdays (Sunday - Thursday)6 and regular working hours (7am - midnight). Arrival rates

vary with time, and the lognormal distribution, with a time-dependent and a class-dependent mean,

is a good fit for the service-time distribution; see Figures 1 and 2 in Brown et al. (2005).

4 This data set is publicly available at: http://ie.technion.ac.il/serveng/callcenterdata/index.html.

5 For the different call types, we use the acronyms that were considered in Brown et al. (2005).

6 Sunday to Thursday are regular work days in Israel.
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Figure 1 Frequencies of waiting times for single-class

IN customers for August 1999.

0.00

2.50

5.00

7.50

10.00

12.50

15.00

17.50

20.00

22.50

00:00 00:30 01:00 01:30 02:00 02:30 03:00 03:30 04:00 04:30 05:00

Minutes (10 sec res.)

Wait Time Frequencies for Low Priority PS Customers
August 1999, All days 

Figure 2 Frequencies of waiting times for low-priority

PS customers for August 1999.

Waiting times. In Figures 1 and 2, we plot the wait-time frequencies (until either abandonment

or service) for IN and PS callers during the month of August 1999, which has the most delayed

callers (1,822 delayed IN callers, and 4,582 delayed low-priority PS callers). Figure 1 shows that

most IN callers experience a short waiting time: 45% of the callers wait less than 10 seconds. In

Table 6, we present summary statistics for the waiting times of IN and PS callers during that same

month, August 1999. Table 6 and Figure 1 show that, while many IN customers do not wait a long

time, the average waiting time remains large because some callers experience very long waits.

Performance measures IN PS

Expected wait time E[W ] 135s 47s

Expected wait time conditional on positive wait E[W |W > 0] 185s 113s

Probability of delay P(W > 0) 73% 41%

Table 1 Point estimates of summary statistics for the waiting times (in seconds), of single-class IN and

low-priority PS callers (August 1999).

3.3. Comparing Static EA and the Dynamic LES Announcement

For each delayed caller, we identify the corresponding LES delay from data, and calculate the

square of the corresponding prediction error, i.e., the square of the difference between the LES

delay and the actual waiting time of the caller, until either service or abandonment. For the EA
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Figure 3 IN customers (August-December): System

is a single-class single-priority queue.
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Figure 4 Low-priority PS customers

(August-December).

announcement, we calculate an out-of-sample estimate of the average waiting time based on the

first 2,000 delayed callers, beginning August 1, which are then discarded from the sample. We note

that our estimate for EA, in the main paper, does not account for seasonality effects, e.g., day-of-

week effects. Including such effects, i.e., making different EA announcements depending on the day

of week, should generally lead to more accurate predictions; we consider such day-of-week-adjusted

announcements in the e-companion (§EC.10.2). For each day in our sample, we average the errors

over all (served and abandoning) delayed customers during that day.

In Figures 3 and 4, we plot running root-mean squared errors corresponding to the EA (solid)

and LES (dashed) announcements, across successive days. Each running average point estimate is

based on averaging squared errors, between actual delays and corresponding announcements, in a

centered window of length 10 days. Clearly, Figures 3 and 4 illustrate that the LES announcement

performs generally worse than EA in this setting. In other words, existing theoretical results which

substantiate the good performance of the LES announcement in large heavily-loaded stationary

systems do not describe the given system well. Based on these observations, we see that exploiting

recent information about the state of the system, as for the LES announcement, may lead, under

certain conditions, to worse performance than EA. Thus, there is a need to investigate further; we

devote the remainder of this paper to this investigation.

4. A Correlation-Based Assessment

In this section, we bring out the role of correlations in understanding the accuracy of the announce-

ments. We begin this section with a numerical study. Specifically, we describe results from simu-

lation experiments which quantify the respective accuracies of the LES announcement and EA in
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various queueing models. Our numerical results paint a complex picture, with seemingly contradic-

tory results. In particular, they illustrate that the LES announcement may be more or less accurate

than EA, depending, in a non-trivial manner, on the interplay between a host of factors such as: (i)

the congestion level, (ii) customer impatience, and (iii) the service discipline in the system. In the

remainder of this section, we develop a correlation-based framework for the accuracies of the LES

announcement and EA. As such, we derive structural insights which hold broadly, based on our

numerics. Then, we introduce the Weighted Announcement, WA, and quantify its performance.

4.1. Numerical Study

We consider a variety of queueing systems. For abandoning customers, we compute the delay

experienced, had the customer not abandoned, by keeping him “virtually” in queue until he would

have begun service. We want to quantify performance in steady state. To this end, we exclude

from each simulation run the first 5,000 events so as to remove the effect of the initial transient

period. Although we will later support our numerical findings by using an asymptotic, many-server,

mode of analysis, we deliberately consider a relatively small number of servers, n = 30, in our

numerical study. This will allow us to show that our asymptotic results are also useful in describing

performance in small to medium systems. Our simulation results, throughout this paper, are based

on 10 independent replications of 2 million arrival events each.

In what follows, we consider single-class and two-class queueing systems, both with patient cus-

tomers (i.e., systems without abandonment), and with impatient customers (i.e., systems with

abandonment). We do so in order to gain a broad understanding of the performance of our alterna-

tive announcements across different queueing models. Later, our correlation-based framework will

allow us to unify our observations across different models. We begin by describing our numerical

results for single-class systems. Then, we turn to two-class queueing systems.

Single-class queueing systems. We assume that customers arrive according to a Poisson process

with rate λ. We assume that there are n homogeneous servers working in parallel. We let service

times be independent and identically distributed (i.i.d.) exponential random variables with rate µ;

without loss of generality, we let µ= 1. We consider systems both with patient and with impatient

customers. In systems with impatient customers, we let the times to abandon be i.i.d. exponen-

tial random variables with rate θ. The abandonment, service, and arrival processes are mutually

independent. The traffic intensity, ρ, is given by ρ≡ λ/nµ. Without abandonment, we assume that

ρ < 1 so that a proper limiting steady state exists; otherwise, abandonment ensures the stability

of the system, irrespective of the value of ρ. We also assume that there is unlimited waiting space.

In terms of service discipline, we consider FCFS.

We let µ= 1 and θ= 0.5, and vary the value of λ to vary ρ. In Figures 5 and 6, we present plots

of the RASE’s of EA and the LES announcement, as a function of ρ, in a single-class M/M/30
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(Figure 5) and M/M/30 +M (Figure 6) models, under FCFS. Figure 5 shows that, in the absence

of abandonment, the LES prediction is less accurate than the EA prediction for small values of

ρ, but not otherwise. For the M/M/n model, it is well known that the steady-state waiting time,

conditional on the wait being positive, has an exponential distribution with mean 1/n(1−ρ). Thus,

the RASE of the EA predictor, which is an estimate of the coefficient of variation of an exponential

distribution, should be close to 1; this is consistent with Figure 5. In contrast, Figure 6 shows that

incorporating customer abandonment reverses the result: While the LES announcement is more

accurate than EA for small values of ρ, it is marginally less accurate otherwise. In §5, we will

present a simple explanation for this puzzling change in performance.

Two-class queueing systems. We consider a non-preemptive priority service discipline. We use

subscript H and L to denote the high and low priority classes, respectively. With two classes, we

assume identical service and abandonment rates forH and L: µH = µL = 1 and θH = θL = 0.5. We fix

ρH ≡ λH/nµH = 0.5, and vary ρL ≡ λL/nµL by varying λL; increasing λL amounts to increasing the

overall congestion level in the system. We consider stable systems, e.g., we assume that ρH +ρL < 1

where there is no abandonment. Both classes are served by the same pool of agents.

In Figures 7 and 8, we present corresponding results for low-priority customers in a two-class

queueing model with non-preemptive priority, with and without customer abandonment, respec-

tively. We focus on low-priority customers only, because high-priority customers are approximately

unaffected by low-priority customers, particularly when the number of servers is not too small.

In other words, high-priority customers roughly “see” a single-class FCFS system, as in Figures 5

and 6. Our simulation results are also in line with this observation. In Figures 7 and 8, we plot

the RASE’s for low-priority customers, with patient and with impatient customers, as a function

of ρL/ρH , which measures the relative congestion due to L arrivals; recalling that ρH = 0.5 is held

constant, the higher ρL/ρH , the more congested the system. Figure 7 shows that, in the absence

of abandonment, the relative performance of the LES announcement and EA is similar to Figure

5. However, Figure 8 illustrates that, due to incorporating abandonment, the LES announcement

is marginally less accurate than EA for low and high values of ρL/ρH , but is marginally more

accurate than EA for intermediate values of ρL/ρH .

In short, Figures 5-8 paint a complex picture: The accuracies of the LES announcement and

EA are strongly tied to the model at hand, and may vary considerably depending on several

characteristics of the system. Next, we “unify” our seemingly contradictory numerical observations.

4.2. The Role of Correlations

For ease of exposition, we let WD ≡ [W∞|W∞ > 0] represent a random variable with the distribution

of the steady-state virtual waiting time, conditional on the wait being positive. Thus, the virtual
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Figure 5 RASE of LES and EA in the M/M/30

model, without abandonment.
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Figure 6 RASE of LES and EA in the M/M/30 +M

model, with abandonment.
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Figure 7 RASE of LES and EA for low-priority

customers in the two-class M/M/30 model, with a

non-preemptive priority discipline.
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Figure 8 RASE of LES and EA for low-priority

customers in the two-class M/M/30 +M model, with a

non-preemptive priority discipline.

waiting time of a new delayed customer, to whom a delay prediction is made, is distributed as WD.

Let P represent a random variable with the distribution of a given delay prediction in steady state.

To illustrate, for the LES prediction, P has the distribution of the steady-state waiting time of a

served customer, conditional on the event that the next arrival, after entry of the LES customer to

service, is delayed and no other customers have entered service before the new arrival epoch. The
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MSE corresponding to delay predictor P is given by:

MSE(P ) =E[(WD−P )2]. (3)

Recall that the EA prediction is equal to E[WD], so that MSE(EA) =E[(WD−E[WD])2] = Var[WD].

We let CWD
≡
√

Var[WD]/E[WD] denote the coefficient of variation of WD. The following proposi-

tion, which is straightforward to establish, holds.

Proposition 1. Let r[P,WD] denote the correlation between P and WD, under steady-state

conditions. If E[P ] = γE[WD] and Var[P ] = βVar[WD], where γ ≥ 0 and β ≥ 0, then:

MSE(P ) = Var[WD]

(
β+ 1 +

(
γ− 1

CWD

)2

− 2 · r[P,WD]
√
β

)
. (4)

Proof. We have:

MSE(P )≡E[(P −WD)2] = E[(P −E[P ] +E[P ]−E[WD] +E[WD]−WD)2]

= Var[P ] + Var[WD] + (γ− 1)2(E[WD])2− 2 · r[P,WD]
√
β ·Var[WD]

= Var[WD]

(
β+ 1 +

(
γ− 1

CWD

)2

− 2 · r[P,WD]
√
β

)
.

�

Using Proposition 1, and the fact that E[EA] =E[WD] and Var[EA] = 0, we get the following.

Corollary 1. If E[P ] =E[WD] and Var[P ] = Var[WD], i.e., β = γ = 1, then:

MSE(EA)≤MSE(P ) if, and only if, r[P,WD]≤ 1/2. (5)

Despite its simplicity, Corollary 1 is powerful because it allows for a simple check of the relative

performance of any dynamic prediction and EA: Assessing whether or not such a prediction is more

accurate than EA reduces to calculating correlations in the system at hand. This result applies

broadly, irrespective of the specific queueing model at hand, provided that some mild conditions

are satisfied. This is even the case in systems where customers respond to the announcements,

e.g., as in Ibrahim et al. (2016). We prove in §5 that the condition in the corollary is satisfied,

asymptotically in large systems, for the LES announcement.

4.3. A New Weighted Average Predictor: WA

To go further, we now propose a new predictor which provably outperforms both P and EA. Let

a new Weighted Average predictor, WA(P ), be defined as a weighted average between P and EA.

Specifically, for a prediction P as defined in Corollary 1 and a scalar α, let:

WA(P )≡ αE[WD] + (1−α)P. (6)
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We assume that E[P ] =E[WD] and that Var[WD] = Var[P ], and choose the form in (6) to guarantee

that WA(P ) is unbiased as well, i.e., E[WA(P )] = E[WD] = E[P ]. We also ignore, for now, the

non-negativity restriction on WA(P ) in (6). We can then calculate the MSE-minimizing α:

MSE(WA(P )) ≡ E[(αE[WD] + (1−α)P −WD)2],

= E[(αE[WD] + (1−α)P + (1−α)E[P ]− (1−α)E[P ]−WD)2],

= E[((E[WD]−WD) + (1−α)(P −E[P ]))2],

= [α2− 2(1− r[P,WD]) ·α+ 2(1− r[P,WD])] ·Var[WD],

which is minimized at α∗ = 1 − r[P,WD]. We define the MSE-minimizing, WA∗(P ), prediction,

which corresponds to the MSE-minimizing α∗, as follows:

WA∗(P )≡ (1−α∗) ·E[WD] +α∗ ·P = (1− r[P,WD]) ·E[WD] + r[P,WD] ·P. (7)

We note that the WA announcement as defined necessarily outperforms both LES and EA since

both of these predictors are special cases of the WA announcement for α= 0 and α= 1, respectively.

We note that if 0 ≤ r[P,WD] ≤ 1, which should hold for any reasonable predictor P , then the

WA∗(P ) prediction, as defined in (7), will be nonnegative. For the LES announcement, we prove

in §5 that this is indeed the case for large systems. We directly deduce that:

MSE(WA∗(P ))

MSE(EA)
= 1− r[P,WD]2 and

MSE(WA∗(P ))

MSE(P )
=

1 + r[P,WD]

2
. (8)

Based on (8), we see that, relative to EA, WA∗(P ) is increasingly more accurate as r[P,WD]

increases (more weight is assigned to P in (6)). Conversely, relative to P , WA∗(P ) is increasingly

more accurate as r[P,WD] decreases (more weight is assigned to EA in (6)). Hereafter, for ease

of notation, we use WA to denote the MSE-minimizing weighted-average announcement where

P coincides with the LES prediction. To be able to use the correlation-based framework of this

section, we need to compute r[LES,WD]. Because direct analysis is prohibitively difficult, we focus,

in the next section, on establishing many-server heavy-traffic limits for r[LES,WD] instead.

5. Asymptotic Analysis

In this section, we derive accompanying theory to support our correlation-based framework. While

the framework itself is broadly applicable, we make additional assumptions in this section to

enable a tractable analysis. In particular, we derive many-server heavy-traffic limits for r[LES,WD]

in single-class Markovian systems first with patient customers (§5.1), and then with impatient

customers (§5.2). Then, we consider two-class systems, under the non-preemptive priority service

discipline, also first without (§5.3), and then with (§5.4) abandonment. Following each proposition

and corresponding proof, we provide, in turn, explanations to our simulation-based observations

of §4.1. We relegate the proofs of several technical lemmas to the e-companion.
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5.1. Single Class with Patient Customers

We consider a sequence of queueing models indexed by the number of servers, n. We let λn denote

the arrival rate in system n, and let λn→∞ as n ↑∞. The service rate in the nth system is held

fixed. We let ρn ≡ λn

nµ
< 1 for every n, and assume that ρn→ ρ as n→∞, where ρ≤ 1. For ρ= 1,

we consider the Quality-and-Efficiency Driven (QED) or Halfin-Whitt regime (Halfin and Whitt

1981), which is defined by letting the sequence of arrival rates {λn, n≥ 1} satisfy

lim
n→∞

√
n

(
1− λn

nµ

)
= β where β ≥ 0 . (9)

We begin by recalling the formal definition of the LES announcement. Let tn denote the arrival

time of a delayed customer, to whom a delay announcement is made, in steady state. The virtual

waiting time of this new customer is W n(tn), which has the same distribution as W n
D ≡ [W n

∞|W n
∞ >

0]. Let τnt denote the arrival time of the corresponding LES customer, whose delay was announced,

i.e.,

τnt = sup{s≤ tn : There is an arrival at time s and s+W n(s)≤ tn}. (10)

Then, W n(τnt ) is equal to the LES prediction. We let {N(s) : s ≥ 0} denote the Poisson arrival

counting process, i.e., N(s) is the number of arrivals before or at s. Then, the following holds.

Proposition 2. In the M/M/n model as either (i) ρn = λn

nµ
→ ρ< 1, or (ii) ρn→ 1 in the QED

many-server heavy-traffic regime, as given by (9), we have:

r[W n(τnt ),W n(tn)]→ ρ as n→∞. (11)

Combining the results in Propositions 1 and 2 allows for a simple explanation of our numerical

observations in Figure 5. In large systems, based on (EC.1), if ρ≤ 0.5, then the LES announcement

is less accurate than EA, and if ρ> 0.5, then the LES announcement is more accurate than EA. In

other words, the LES announcement is more accurate than EA when the system is under moderate

to heavy congestion, but not otherwise. It is important to note that although the number of servers

in Figure 5 is relatively small, our results remain useful in roughly describing performance.

To check the robustness of our theoretical results in Proposition 2, we present in Table 2 sim-

ulation point estimates of correlations in the M/G/100 model, where service times are allowed to

follow three distributions: exponential (M), lognormal (LN with mean and variance both equal to

1), and Erlang (E2, with mean 1) distributions for service times. We consider the LN distribution

because there is empirical evidence suggesting a good fit to this distribution in practice (Brown

et al. 2005). Table 2 illustrates that our asymptotic results in Proposition 2 are useful in describing

performance in systems with a variety of service-time distributions, particularly when the traffic

intensity is not too small (e.g., larger than 0.85), and the service-time distribution has moderate

to high variability (e.g., LN rather than E2 service times).
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ρ M/M/100 M/LN(1,1)/100 M/E2/100

0.7 0.712 0.687 0.704
±1.30× 10−3 ±4.8× 10−4 ±0.015

0.75 0.726 0.700 0.654
±2.92× 10−4 ±9.0× 10−4 ±4.0× 10−4

0.8 0.779 0.782 0.728
±4.6× 10−4 ±3.7× 10−4 ±2.4× 10−4

0.85 0.837 0.831 0.799
±7.7× 10−4 ±8.4× 10−4 ±9.9× 10−4

0.9 0.894 0.896 0.869
±1.7× 10−4 ±3.3× 10−5 ±5.6× 10−5

0.95 0.949 0.955 0.938
±2.6× 10−4 ±1.3× 10−4 ±5.0× 10−4

0.98 0.981 0.981 0.973
±1.5× 10−4 ±1.2× 10−5 ±5.6× 10−5

Table 2 Point estimates of correlations in the M/G/100 queueing model, for alternative values of the traffic

intensity ρ.

5.2. Single Class with Impatient Customers

We now derive asymptotic results for the M/M/n+M model. Before getting to those results, we

present some intuition on how including impatient customers may change the results of §5.1. At

a high level, abandonment on the part of customers when facing long delays adds “noise” to the

system. Indeed, when a customer waits for a long time, there will be considerable abandonment,

and the next customer is likely to have a shorter waiting time. Similarly, when a customer waits for

a short time, there will be little abandonment, and the next customer is likely to have a long waiting

time. This seems to suggest that, all else held constant, increasing the congestion level in the system

should lead to a decrease in the correlation. Indeed, this is confirmed by the asymptotic results of

this section. In §5.2.1, we consider the efficiency-driven (ED) regime, considered in Whitt (2004),

where the arrival rate λn increases without bound while the traffic intensity ρn = λn/nµ= ρ > 1

is held equal to a constant value. In §5.2.2, we consider the Quality-and-Efficiency Driven (QED)

regime; see Garnett et al. (2002). In particular, we let:

lim
n→∞

√
n

(
1− λn

nµ

)
= β where β ≥ 0 . (12)

where β < 0 in (9) is now allowed because customer abandonment keeps the system stable in this

case. We assume that θn ≡ θ for all n, i.e., the abandonment rate remains constant as n increases.
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5.2.1. The ED Regime. Here is our main result for the ED regime.

Proposition 3. For the M/M/n + M model in the ED many-server heavy-traffic limiting

regime, we have that:

r[W n(τnt ),W n(tn)]→ 1

ρ
as n→∞. (13)

We note that the asymptotic behavior with and without abandonment is different, so that it is not

straightforward to write the no-abandonment setting as a special case of the abandonment setting

with θ = 0. Indeed, it is interesting to note that the correlation is independent of the individual

abandonment rate, θ, i.e., of the speed at which customers abandon from the system. Moreover,

the correlation is decreasing in the traffic intensity, ρ. We now turn to the QED regime.

5.2.2. The QED Regime. Here is our main result for the QED regime.

Proposition 4. For the M/M/n+M model in the many-server heavy-traffic QED regime:

r[W n(tn),W n(τnt )]→ 1 as n→∞. (14)

Combining the results in Propositions 1 and 3 allows for a simple explanation of our numerical

observations in Figure 6: Based on (EC.2), the LES announcement is less accurate than EA, in large

systems, if 1/ρ≤ 0.5, i.e., ρ≥ 2. Further, if ρ < 2, then the LES announcement is more accurate

than EA. As before, although the number of servers in Figure 6 is relatively small, our results

remain useful in roughly describing performance. Moreover, comparing the results of Propositions 2

and 3 allows for an explanation of the effect of abandonment on the system: Because the correlation

increases (decreases) with ρ in the absence (presence) of abandonment, the relative accuracies of

the LES announcement and EA are “reversed” when customers have a finite patience.

For robustness checks, we present in Table 3 simulation point estimates of correlations in the

M/M/100 + G model, where times to abandon are allowed to follow a general, not necessarily

exponential, distribution. In particular, we consider exponential, hyperexponential (H2 with bal-

anced means, squared coefficient of variation equal to 4, and mean equal to 2), and Erlang (E2,

with mean 2) abandonment distributions. We consider hyperexponential times to abandon because

there is empirical evidence suggesting a good fit to this distribution in practice (Roubos and Jouini

2013). Table 3 illustrates that our asymptotic results in Proposition 3 are useful in describing

performance in systems with a general time to abandon distribution as well, particularly with

hyperexponential abandonment times and when the system is heavily congested. As in Table 2, the

asymptotic results of Proposition 3 are less accurate with distributions that have low variability,

such as Erlang (which has coefficient of variation equal to 1/2).
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ρ 1/ρ M/M/100 +M M/M/100 +H2 M/M/100 +E2

1.1 0.91 0.862 0.767 0.854
±8.2× 10−4 ±4.3× 10−4 ±8.4× 10−4

1.3 0.77 0.766 0.743 0.653
±9.5× 10−4 ±9.4× 10−4 ±2.1× 10−3

1.5 0.67 0.667 0.665 0.526
±2.1× 10−3 ±9.2× 10−4 ±2.3× 10−3

1.7 0.588 0.588 0.593 0.439
±3.1× 10−3 ±1.4× 10−3 ±1.7× 10−3

2 0.5 0.496 0.511 0.347
±3.9× 10−3 ±1.6× 10−3 ±2.2× 10−3

2.2 0.45 0.455 0.472 0.304
±3.0× 10−3 ±2.1× 10−3 ±3.7× 10−3

2.5 0.4 0.399 0.424 0.259
±1.9× 10−3 ±2.4× 10−3 ±4.1× 10−3

Table 3 Point estimates of correlations in the heavily-loaded M/M/100 +G queue, for alternative values of

the traffic intensity ρ.

5.3. Priority Queue with Patient Customers

We now turn to the system with priority queues. We will first consider the system with patient

customers. We index the arrival rate, λ, by either L or H to denote the low and high classes,

respectively. As before, we consider a sequence of queueing systems indexed by n. We assume that

λnL and λnH increase without bound, and the traffic intensities λnL/nµ≡ ρL and λnH/nµ≡ ρH are held

fixed such that ρL+ρH < 1, to ensure stability. Here is our main result which characterizes the cor-

relation between the LES delay and actual waiting time experienced by the low-priority customer.

For high-priority customers, the same insights from single-class single-priority queues continue to

hold, since high-priority customers do not “see” low-priority customers (if the service discipline

is preemptive, this is exactly true; if the discipline is non-preemptive, this is asymptotically true

when the system is sufficiently large).

Proposition 5. For low-priority customers in an M/M/n two-class queueing system with a

non-preemptive priority discipline, where λnL/nµ≡ ρL, λnH/nµ≡ ρH , and ρH + ρL < 1:

r[W n(τnt ),W n(tn)]→ ρL
1− ρH

as n→∞. (15)

Proof. For the proof of the proposition, we need the following lemma.
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Lemma 1. For all x≥ 0,

lim
n→∞

P(W n(τnt )≥ x) = lim
n→∞

P(W n(tn)≥ x).

Now, proceeding as in the proof for Proposition 2:

W n(tn) =

NL(W
n(τnt ))∑

i=1

Bn
i +Zn,

where Bn
i is the length of a busy period in an M/M/1 queue with arrival rate λnH and service

rate nµ, and Zn is independent of W n(τnt ). This is so because when the LES customer with low

priority entered service, there must have been no H customers in queue. It is well known that

E[Bn
i ] = 1/(nµ−λnH); e.g., see Kleinrock (1975). Thus,

Cov[W n(tn),W n(τnt )] = Cov

NL(Wn(τnt ))∑
i=1

Bn
i ,W

n(τnt )


= E

NL(W
n(τnt ))∑

i=1

Bn
i

W n(τnt )

−E

NL(Wn(τnt ))∑
i=1

Bn
i

E[W n(τnt )]

=
ρnL

1− ρnH
Var [W n(τnt )] .

By Lemma 1, assuming that appropriate uniform integrability holds, we obtain that

limn→∞Var[W n(τnt )] = limn→∞Var[W n(tn)]. This implies that:

r[W n(τnt ),W n(tn)]→ ρL
1− ρH

as n→∞.

�

Combining the results of Propositions 1 and 5 allows for a simple explanation of our numerical

observations in Figure 7. Based on (15), if ρL/(1− ρH)≤ 0.5, then the LES announcement is less

accurate than EA, in large systems, and otherwise it is more accurate. Recall our assumption in

Figure 7 that ρH = 0.5; thus, ρL/(1− ρH) = ρL/ρH in this case, which explains our results in the

figure. For robustness checks, we present in Table 4 simulation point estimates of correlations in

the two-class M/G/100 model with non-preemptive priority, where we increase λL to increase ρL,

and keep ρH = 0.5 constant. Table 4 illustrates that our asymptotic results in Proposition 1 are

useful in describing performance in systems with a general service-time distribution as well.

5.4. Priority Queue with Impatient Customers

We now turn to the case of a priority queue with abandonment. We use the same notation as in the

previous section. As before, we consider a sequence of queueing systems indexed by n. We consider

an exponential abandonment-time distribution, and assume that the abandonment rate θn ≡ θ is

constant as n increases. Here is our main result, which we prove in the appendix.
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ρL
ρL

1−ρH
M/M/100 M/LN(1,1)/100 M/E2/100

0.35 0.7 0.659 0.664 0.601
±7.1× 10−3 ±2.5× 10−3 ±5.8× 10−3

0.375 0.75 0.707 0.729 0.666
±4.1× 10−3 ±3.5× 10−3 ±7.4× 10−3

0.4 0.8 0.771 0.785 0.734
±2.6× 10−3 ±2.2× 10−3 ±3.6× 10−3

0.425 0.85 0.8324 0.846 0.805
±3.2× 10−3 ±2.1× 10−3 ±2.5× 10−3

0.45 0.9 0.892 0.903 0.873
±1.9× 10−3 ±3.0× 10−3 ±3.7× 10−3

0.475 0.95 0.947 0.951 0.942
±1.8× 10−3 ±2.0× 10−3 ±1.8× 10−3

0.49 0.98 0.976 0.980 0.979
±1.3× 10−3 ±8.7× 10−4 ±3.2× 10−3

Table 4 Estimates of correlations for low-priority customers (with corresponding 95% confidence intervals) in

the two-class M/G/100 queue with ρH = 0.5 and varying traffic intensity ρL.

Proposition 6. For low-priority customers in an M/M/n+M two-class queueing system with

a non-preemptive priority discipline, where λnL/nµ≡ ρL, λnH/nµ≡ ρH , and ρL + ρH > 1:

r[W n(τnt ),W n(tn)]→ 1− ρH
ρL

. as n→∞. (16)

Proposition 6 allows for a simple explanation of our numerical observations in Figure 8. Based

on (16), the LES announcement is less (more) accurate than EA, in large systems, if (1−ρH)/ρL ≤

(>) 0.5. Recall our assumption in Figure 8 that ρH = 0.5; thus, ρL/(1− ρH) = ρL/ρH in this case,

which explains our results in the figure. For robustness checks, we present in Table 5 simulation

point estimates of correlations in the two-class M/M/100+G model with non-preemptive priority,

where we increase λL to increase ρL, and keep ρH = 0.5 constant. Table 5 illustrates that our

asymptotic results in the proposition remain useful in describing performance in systems with a

general abandonment-time distribution as well. We close this section with a table summarizing our

main theoretical results; see Table 6. In the following section, we describe results from a numerical

study which substantiates and extends our theoretical analysis.

6. Numerical Study

In this section, we begin in §6.1 by describing results of simulation experiments for additional

numerical support. Our objective is two-fold: (i) to substantiate and extend our theoretical results;
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ρL
1−ρH
ρL

M/M/100 +M M/M/100 +H2 M/M/100 +E2

0.55 0.91 0.728 0.547 0.767
±9.0× 10−4 ±1.0× 10−3 ±6.8× 10−4

0.65 0.77 0.721 0.583 0.647
±7.7× 10−4 ±8.3× 10−4 ±2.0× 10−3

0.75 0.67 0.648 0.580 0.516
±1.2× 10−3 ±8.3× 10−4 ±2.1× 10−3

0.85 0.59 0.574 0.549 0.427
±2.4× 10−3 ±9.8× 10−4 ±1.9× 10−3

1 0.5 0.487 0.486 0.337
±1.5× 10−3 ±1.4× 10−3 ±2.8× 10−3

1.1 0.45 0.444 0.448 0.294
±2.7× 10−3 ±1.1× 10−3 ±2.4× 10−3

1.25 0.4 0.388 0.402 0.248
±2.4× 10−3 ±2.1× 10−3 ±4.0× 10−3

Table 5 Estimates of correlations for low-priority customers (with corresponding 95% confidence intervals) in

the two-class M/M/100 +G queue with ρH = 0.5 and alternative values of traffic intensity ρL.

Single class Two classes

Patient customers QED or ρ< 1: ρ ρL + ρH < 1: ρL
1−ρH

Impatient customers QED: 1 ρL + ρH > 1: 1−ρH
ρL

ED: 1/ρ

Table 6 Summary of the asymptotic expressions for correlations in the various models.

and (ii) to test the performance of the new WA predictor, which combines the LES announcement

and EA, under more general modelling assumptions. We also describe the results of additional sim-

ulation experiments in the appendix (§EC.8) and in an online supplement to this main paper. In all

models considered below, the WA predictor consistently outperforms both the LES announcement

and EA. Then, we revisit the empirical results of §3 in §6.2. In this section, we focus on steady-state

simulations. In the online supplement, we consider the transient state as well, and comment on the

speed with which the system converges to steady state, depending on the parameters in the system.

There, we also consider systems where the number of servers is moderately small, and show that

our asymptotic results are useful in describing performance in such systems as well.
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6.1. Performance of the WA Prediction

We begin by considering generally-distributed, i.e., non-exponential, service and abandonment

times. In Table 7, we consider both exponential and lognormal (LN(1,1)) service times for a

single-class model. We vary the value of the traffic intensity, ρ, and present a point estimate of the

ASE for each delay announcement, for that value of ρ. (We report corresponding estimates of 95%

confidence intervals in the supplement, and key insights continue to hold.) For the WA prediction,

we consider two alternatives: (i) we use the theoretical asymptotic expression for the correlation,

as given by our analysis in §5, depending on the model, and (ii) we consider a running-average

simulation-based estimate for the correlation; the corresponding predictor is denoted WA-run. We

also consider a delay prediction which is equal to an exponentially smoothed average over previous

LES delays (Holt 2004), where we estimate the value of the smoothing factor in the simulation by

using a gradient-descent method to minimize the errors between the smoothed averages and actual

delays, in a training set consisting of 100 data points (after steady state is reached). We denote

this predictor by EXP.

Table 7 shows that both WA and WA-run consistently outperform the remaining predictors,

for all values of ρ considered. These two predictors also have a very similar performance, which

further substantiates our earlier asymptotic results. We also note that ASE(EXP) is almost indis-

tinguishable from ASE(LES), particularly when ρ is large enough: This illustrates that there is no

advantage in averaging over previous LES delays in this case. In Table 8, we present results for

generally-distributed times to abandon in a two-class model. In particular, we consider H2 times to

abandon with mean equal to 1 and variance equal to 4; we report results for low-priority customers

only. Table 8 shows that similar observations continue to hold: WA and WA-run perform almost the

same, consistently outperforming the rest of the predictors. The exponentially-smoothed prediction

performs almost the same as the LES announcement, i.e., there is no advantage in averaging over

previous LES delays.

6.2. Revisiting the Data

Recall that the LES prediction may be significantly less accurate than the EA prediction in our

data set; see Figures 3 and 4. Primarily, our goal in this section is to test the performance of the WA

predictor with data. We will show that WA usually yields superior performance to both the LES

announcement and EA, thus further substantiating the usefulness of that predictor in practice.

We set WA ≡ (1− r̂) · EA + r̂ · LES, where r̂ is a point estimate for the correlation, which we

calculate based on data. For both EA and r̂, we calculate out-of-sample point estimates which are

based on the first 2,000 delayed callers, beginning August 1, which are later discarded from the

sample. For IN callers, our point estimate for r̂IN = 0.24 and, for low-priority PS callers, it is given
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M/M/100

ρ LES EA WA WA-run EXP E[W |W > 0]

0.7 0.0293 0.0369 0.0271 0.0274 0.0292 0.0370

0.8 0.0345 0.0502 0.0325 0.0325 0.0344 0.0507

0.9 0.0466 0.0992 0.0453 0.0453 0.0466 0.0993

0.98 0.101 0.508 0.100 0.101 0.101 0.491

M/LN(1,1)/100

ρ LES EA WA WA-run EXP E[W |W > 0]

0.7 0.0299 0.0368 0.0280 0.0282 0.0299 0.0348

0.8 0.0321 0.0467 0.0302 0.0302 0.0320 0.0458

0.9 0.0430 0.0920 0.0418 0.0418 0.0430 0.0920

0.98 0.0970 0.500 0.0967 0.0967 0.0970 0.497

Table 7 Comparison of the square-root ASE’s for the different predictions in the M/G/100 model for

alternative values of the traffic intensity, ρ.

by r̂PS = 0.17. Our point estimates for the out-of-sample average waiting times, for each call type,

are EAIN = 173 seconds and EAPS = 121 seconds. We use these estimates as static announcements

in our data set. In the e-companion, we take a closer look at performance by classifying delayed

callers into different groups, depending on their waiting times, and present results for other call

types as well. Here, we summarize our key results, which hold broadly across all call types.

6.2.1. Accuracy of the WA Prediction. Figures 9 and 10 parallel Figures 3 and 4, with

an additional curve corresponding to the errors for WA. In particular, for the same days in the

sample set, we plot the relative average squared errors corresponding to the new WA predictor

as well. Figures 9 and 10 show that the new predictor outperforms both the LES announcement

and EA. We take a closer look at performance in Table 9, where we present data estimates for

the ratios of ASE’s of our three predictors. The first sub-table corresponds to IN callers, whereas

the second corresponds to low-priority PS callers. Each column in the table corresponds to days

where one of the predictors yields the smallest ASE. For example, for the first column, we restrict

attention to those days where the LES announcement yielded the smallest ASE: For IN calls, the

LES announcement yielded the smallest ASE on 5 days out of the 85 days in our sample, i.e.,

on 6% of the days. On those days, we present estimates of ASE(EA)/ASE(LES) (first row) and

ASE(WA)/ASE(LES) (second row). Based on Table 9, we can make the following observations.

First, it is clear that WA outperforms both the LES announcement and EA: The proportions of
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M/M/100 +M with two classes

ρL ρH LES EA WA WA-run EXP E[W |W > 0]

0.55 0.5 0.163 0.219 0.157 0.152 0.163 0.301

0.65 0.5 0.203 0.269 0.189 0.189 0.203 0.537

0.85 0.5 0.260 0.281 0.231 0.231 0.260 1.062

1 0.5 0.284 0.281 0.246 0.246 0.284 1.385

1.25 0.5 0.310 0.280 0.259 0.259 0.310 1.832

M/M/100 +H2 with two classes

ρL ρH LES EA WA WA-run EXP E[W |W > 0]

0.55 0.5 0.114 0.118 0.109 0.101 0.113 0.145

0.65 0.5 0.127 0.137 0.116 0.114 0.126 0.201

0.85 0.5 0.151 0.158 0.134 0.134 0.151 0.346

1 0.5 0.165 0.163 0.143 0.143 0.165 0.454

1.25 0.5 0.181 0.166 0.153 0.153 0.181 0.610

Table 8 Comparison of the square-root ASE’s of the different predictions for low-priority customers, in the

two-class M/M/100 +G model, with alternative values of the traffic intensity, ρ.

days over which ASE(WA) is smallest is considerably greater for both call types. For an aggregate

measure of performance with IN callers, we note that, averaging the ASE’s across all days in our

sample: ASE(LES)/ASE(WA) = 1.75 and ASE(EA)/ASE(WA) = 1.05. For an aggregate measure

of performance with PS callers, we note that, averaging the ASE’s across all days in our sample:

ASE(LES)/ASE(WA) = 1.43 and ASE(EA)/ASE(WA) = 1.11. In other words, it is clear that WA

usually performs best on average.

Second, our results indicate that even on days where either the LES announcement or EA

yield the smallest ASE’s (first and second columns in the tables), WA does not perform too

poorly. For example, on days where the LES announcement yields the smallest ASE, we have that

ASE(WA)/ASE(LES) = 1.14 (these numbers are computed on average across the sub-sample of

days). In contrast, ASE(EA)/ASE(LES) = 2.38 for those same days. This means that even though

the LES announcement yields the smallest ASE, it performs much better than EA, but that this

is not the case for WA. The same observations hold when EA yields the smallest ASE (second

column in the table) as well. In other words, WA usually performs better than both the LES

announcement and EA, and when it is outperformed by either predictor, it remains a reasonably
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Figure 9 IN customers (August-December): System

is a single-class single-priority queue.
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Figure 10 Low-priority PS customers

(August-December).

accurate prediction, i.e., it does not perform too poorly. Third, when WA yields the smallest ASE

(third column in the table), it significantly outperforms both EA and the LES announcement. For

example, for IN calls, ASE(EA) is 53% larger than ASE(WA) and ASE(LES) is more than three

times ASE(WA).

IN Call Type (single-class queue with a single priority)

Ratios of (row) ASE to (column) winner ASE
EA wins (28%) WA wins (66%) LES wins (6%) Overall

EA 1 1.53 2.38 1.43
WA 1.05 1 1.14 1.02
LES 2.09 3.20 1 2.75

PS Call Type (low-priority callers)

Ratios of (row) ASE to (column) winner ASE
EA wins (8%) WA wins (69%) LES wins (23%) Overall

EA 1 1.15 2.26 1.39
WA 1.02 1 1.70 1.16
LES 2.25 1.58 1 1.50

Table 9 Comparison of the ASE’s of EA, WA, and LES in August-December for IN and PS customers. In each

column, we report estimates of the ratio of the ASE of the prediction in the corresponding row, relative to the

ASE of the predictor in the corresponding column.

6.3. Queue-Length-Based Predictions

In this section, we consider a new data-based predictor which exploits information about the queue

length seen by a delayed customer upon arrival to the system. It is well known that the MSE-
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minimizing prediction, conditional on the queue-length information, is the conditional expected

waiting time, given that information. In our data set, agent service rates are time-varying and the

numbers of available agents vary with time. Thus, we must resort to estimating these quantities

in the data to be able to approximate the expected waiting time conditional on the queue-length

information. To estimate those conditional expectations in our data set, we resort to linear regres-

sion. Specifically, letting Qi denote the queue-length seen upon arrival by customer i, and Wi her

corresponding waiting time until either service or abandonment, we assume the following model:

Wi = β0 +β1×Qi + εi, (17)

where εi are i.i.d. normally distributed random variables with mean 0 and standard deviation σε.

We estimate the linear regression coefficients β0 and β1 in (17) based on data for the first 2,000

customers in our data set. We restrict attention to single-class IN customers, since the waiting-time

for low-priority customers (e.g., PS callers) is determined by both the queue-length seen upon

arrival as well as future high-priority arrivals during the waiting time of the delayed customers.

For IN callers, the estimates for β0 and β1 are given by:

β̂0 = 167.2 and β̂1 = 51.6.

That is, we define the Data-Based-Queue-Length (DB-QL) prediction for the ith delayed customer

as β̂0 + β̂1×Qi. In Table 10, we compare the accuracy of the new DB estimator to EA, WA, and the

LES announcement. Table 10 shows that while DB-QL is competitive, it is usually outperformed

by the WA prediction. In particular, we find that the WA prediction outperforms DB-QL most of

the time. This is likely due to the fact that the queue-length-based prediction, i.e., the conditional

expected value of the waiting time, cannot be calculated in closed form in our setting, so that even

though it should have a superior performance in theory, it does not have a superior performance

in practice. It is important to emphasize that our intention is not to downplay the importance

and relevance of considering queue-length-based predictions in general, but rather to point that

alternative predictions such as the ones considered in this paper are important to consider as well,

and may even outperform queue-length-based predictions in practice.

6.4. Customer Response to the Announcements: Endogenous Demand

In this section, we consider a setting where customers respond to the announcements that they

receive. In particular, we assume that an arriving customer balks in response to an announcement,

w, with probability β(w). We do so because of empirical support that customers respond to delay

announcements in practice; e.g., see Aksin et al. (2016) and Yu et al. (2016). We begin by noting that

our correlation-based framework continues to apply when customers respond to the announcements.
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IN Call Type

EA wins (8.2%) WA wins (54.1%) LES wins (5.8%) DB-QL wins (31.8%)

EA/winner 1 1.64 2.38 1.07
WA/winner 1.03 1 1.14 1.10
LES/winner 2.08 3.52 1 2.08

DB-QL/winner 1.06 1.56 2.25 1

Table 10 Comparison of the ASE’s of EA, WA, LES, and DB-QL in August-December for IN customers. In

each column, we report estimates of the ratio of the ASE of the prediction in the corresponding row, relative to

the ASE of the predictor in the corresponding column.

Indeed, Proposition EC.2 does not make any assumptions about the distributions of P and WD

and, in particular, continues to apply to systems where customers react to the announcements.

Such systems involve a complex equilibrium where the announcement and the delay experienced

must coincide, but that does not matter. Additionally, it was shown in Ibrahim et al. (2016) that,

under some regularity assumptions, if LES announcements are made and customers respond to

the announcements, then asymptotically in large systems, under both the QED and ED regimes,

the conditions of Corollary 1 hold and we have β = γ = 1; see Theorems 1 and 2 in Ibrahim et al.

(2016). The only caveat is that, while our proposed correlation framework itself applies, deriving

analytical expressions for the correlation r[LES,WD] is quite complicated when customers respond

to the announcements, because the system itself is no longer Markovian.

To gain insight into expressions for correlations with customer response, we rely on simulation.

In Table 11, we present point estimates of correlations and ASE’s in the M/M/100 +M model

with varying ρ and µ= 1 and θ= 0.5, for two functional forms for β(w): β1(w) = 1−exp(−θw) and

β2(w) =w/(1+w). We choose these two functional forms to ensure that the regularity conditions of

Ibrahim et al. (2016) are satisfied (similar functions were considered in that paper). We estimated

the corresponding 95% confidence intervals and found them to be sufficiently small; thus, we do not

report them in the table. In Table EC.5 in the e-companion, we consider an alternative functional

form for the balking probability, β0(w) as specified in (EC.8), for which the regularity conditions

of Ibrahim et al. (2016) do not hold. Then, the mean and variance of the LES predictions may

diverge from those of the virtual waiting times, so that Corollary 1 no longer holds. Nevertheless,

Proposition 1 continues to hold, as we illustrate in Table EC.5. We find that the obtained cor-

relations remain remarkably close to 1/ρ, consistently with our theoretical results in §5.2, where

customers do not respond to the announcements. However, we do not have a proof for this at

present. In the last column of Table 11, we draw attention to a possible pitfall: There, we consider

β3(w) = 1− exp(−θE[W |W > 0]) where E[W |W > 0] denotes the expected virtual waiting time in

the system (we obtain a point estimate for E[W |W > 0] in an initial run of the system). Since

the system experiences an equilibrium where announced and experienced delays roughly coincide,
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it may be tempting to assume that the system with state-dependent announcements has roughly

the same performance as when all customers are announced an equilibrium announcement, equal

to exp(−θE[W |W > 0]). However, comparing the first and third column of Table 11 illustrates

that the two systems, with state-dependent and equilibrium fixed announcements, behave quite

differently, particularly when ρ is large.

β1(w) β2(w) β3(w)

ρ 1/ρ Corr LES EA Corr LES EA Corr

1.2 0.83 0.831 0.00407 0.00972 0.836 0.00240 0.00451 0.863
1.4 0.71 0.711 0.00699 0.0117 0.723 0.00375 0.00608 0.835
1.6 0.63 0.621 0.00967 0.0125 0.643 0.00512 0.00669 0.789
1.8 0.56 0.548 0.0121 0.0131 0.580 0.00631 0.00706 0.743
2.0 0.5 0.491 0.0141 0.0136 0.528 0.00738 0.00737 0.703

Table 11 Point estimates of correlations and ASE’s in the heavily-loaded M/M/100 +M queue where

customers balk with probability β(w) in response to an LES delay w. We let β1(w) = 1− exp(−θw),

β2(w) =w/(1 +w), and β3(w) = 1− exp(−θE[W |W > 0]).

7. Conclusions and Future Research

In this paper, we compared the performance of the LES and static delay announcements. We

developed a new correlation-based assessment which enables an easy comparison of the accuracies

of static and dynamic announcements across several queueing models. The main takeaway from

our analysis is that it is indeed justifiable to resort to simple static announcements, in certain

cases, as is commonly done in practice. Indeed, even though the LES announcement takes real-time

information into account, it may have worse accuracy than the simple static announcement.

Our asymptotic results, on the values of correlations, provide insights on how the accuracies of

the LES announcement and EA depend on the traffic intensity in the system. In general, static

announcements are appropriate in low to moderately congested systems when there is little or

no abandonment, and under heavy congestion when there is considerable abandonment. Our data

analysis revealed that they are especially useful in small systems, but that they may be significantly

outperformed by dynamic announcements, such as the LES announcement, in large systems. Our

numerical study suggests that these results continue to hold in multi-class systems with abandon-

ment, and with time-varying arrival rates as well. Our theoretical, empirical, and numerical results

all support the superiority of our new WA prediction.

There remains several extensions which are worth exploring in future research. Extensions of our

results for the two-class priority system to systems with multiple classes is a direct extension. The

system with time-varying arrivals, to which we only presented numerical results at this stage, is



Author: A correlation-based approach
30 Article submitted to Management Science; manuscript no. XXX

worth exploring as well. It is also of interest to incorporate customer response to the announcements

in our framework, e.g., in the spirit of Ibrahim et al. (2016), and to explore the impact of customer

response on correlations in those settings. Finally, we focused here on the case where a single

announcement is given to a delayed customer upon arrival. It would be interesting to consider

an alternative setting where multiple announcements are given to delayed customers during their

wait. Exploring this extension remains an interesting topic for future research.
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Electronic Companion:

In this e-companion, we present supporting material to the main paper. In§??, we present the

proof of Proposition 2. In §EC.2, we prove Proposition 3. In §EC.3, we prove Proposition .

In §EC.4, we prove technical lemmas ??-1. In §EC.10, we present additional empirical support

which corresponds to analyzing our first call-center data set, described in §3.

EC.1. Proof of Proposition 2

Proposition EC.1. In the M/M/n model as either (i) ρn = λn

nµ
→ ρ < 1, or (ii) ρn→ 1 in the

QED many-server heavy-traffic regime, as given by (9), we have:

r[W n(τnt ),W n(tn)]→ ρ as n→∞. (EC.1)

Proof. For the proof of the proposition, we need the following Lemma EC.1 which we prove

in the following section.

Lemma EC.1. For all x≥ 0,

lim
n→∞

P(W n(τnt )≥ x) = lim
n→∞

P(W n(tn)≥ x).

Moreover, limn→∞Var[W n(τnt )] = limn→∞Var[W n(tn)].

We let γnt denote the time of entry of the LES customer to service, and let ξnt ≡ tn− γnt denote

the time between the entry to service of the LES customer and the new arrival time. We note that

the following analysis holds irrespective of the initial state of the system; in particular, we do not

need to be in steady state. We can write

W n(tn) =

N(tn−τnt )∑
i=1

Xi =

N(Wn(τnt )+ξnt )∑
i=1

Xi =

N(Wn(τnt ))∑
i=1

Xi +

N(tn)−N(γnt )−1∑
i=1

Xi =

N(Wn(τnt ))∑
i=1

Xi +Y n,

whereXi ∼Exp(nµ) and Y n ≡
∑N(tn)−N(γnt )−1

i=1 Xi is independent ofW n(τnt ). This is so because γnt is

a stopping time for the Poisson arrival process; by the strong Markov property and the memoryless

property for the exponential service times, we have independence. Thus, letting Cov[X,Y ] denote

the covariance between two random variables X and Y :

Cov [W n(τnt ),W n(tn)] = Cov

N(Wn(τnt ))∑
i=1

Xi,W
n(τnt )


= E

N(Wn(τnt ))∑
i=1

Xi

 ·W n(τnt )

−E

N(Wn(τnt ))∑
i=1

Xi

 ·E [W n(τnt )]
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= E

E
N(Wn(τnt ))∑

i=1

Xi

 ·W n(τnt )

∣∣∣∣W (τnt )


− E

E
N(Wn(τnt ))∑

i=1

Xi

∣∣∣∣W (τnt )

 ·E [W n(τnt )]

= E
[
λnW (τnt )

nµ
·W (τnt )

]
−E

[
λnW (τnt )

nµ

]
E[W (τnt )]

= ρnE[(W n(τnt ))2]− ρn(E[W n(τnt )])2 = ρnVar[W n(τnt )],

where we used the law of iterated expectations in the previous expressions. Therefore, we deduce

that:

r[W n(τnt ),W n(tn)] =
ρnVar[W n(τnt )]√

Var[W n(τnt )]Var[W n(tn)]
→ ρ as n→∞.

�

EC.2. Proof of Proposition 3

Proposition EC.2. For the M/M/n+M model in the ED many-server heavy-traffic limiting

regime, we have that:

r[W n(τnt ),W n(tn)]→ 1

ρ
as n→∞. (EC.2)

Proof. For the proof of the proposition, we need the following lemma where Nor(µ,σ2) denotes

a normal distribution with mean µ and variance σ2.

Lemma EC.2. In the ED regime,

(a) For any w≥ 0,

lim
n→∞

P(W n(τnt )≥w) = lim
n→∞

P(W n
S ≥w),

where W n
S is a random variable with the distribution of the virtual waiting time of a customer

conditional on the customer being both delayed and served.

(b) As n→∞,
√
n(W n

S − w̄)⇒Nor

(
0,

1

θµ

)
,

where w̄≡ 1
θ

ln(ρ).

We are now ready to derive an asymptotic expression for the correlation. To this end, we write:

r[W n(tn),W n(τnt )] =
Cov[W n(t),W n(τnt )]√
Var[W n(t)]Var[W n(τnt )]

.

We have,

Cov[W n(tn),W n(τnt )] =
1

2
(Var[W n(t)] + Var[W n(τnt )]−Var[W n(t)−W n(τnt )])

=
1

2
(Var[W n(t)] + Var[W n(τnt )])− 1

2n
Var[
√
n(W n(t)−W n(τnt ))].
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By Theorem 4 of Ibrahim and Whitt (2009a), we have that

Var[
√
n(W n(tn)−W n(τnt ))]→ 2(ρ− 1)

ρθ
as n→∞.

Also, we have that that nVar[W n(tn)]→ 1
θ
, where we use Theorem 6.4 of Talreja and Whitt (2009)7.

Lemma EC.2 implies that nVar[W n(τnt )]→ 1
θ
. Thus,

r[W n(tn),W n(τnt )] =
n
2
Var[W n(tn)] + n

2
Var[W n(τnt )]− 1

2
Var[
√
n(W n(tn)−W n(τnt ))]√

nVar[W n(tn)] ·nVar[W n(τnt )]

→ 1−
ρ−1
ρθ

1
θ

.

That is,

r[W n(t),W n(τnt )]→ 1

ρ
in the ED regime.

�

EC.3. Proof of Proposition

Proposition EC.3. For the M/M/n+M model in the many-server heavy-traffic QED regime:

r[W n(tn),W n(τnt )]→ 1 as n→∞. (EC.3)

Proof. For the proof, we need the following lemma.

Lemma EC.3. In the QED regime,

(a) For any w≥ 0,

lim
n→∞

P(
√
nW n(τnt )≥w) = lim

n→∞
P(
√
nW n

S ≥w),

where W n
S is a random variable with the distribution of a served customer who is delayed.

(b) For any w≥ 0,

lim
n→∞

P(
√
nW n(tn)≥w) = lim

n→∞
P(
√
nW n

S ≥w).

To prove the proposition, we can write:

r(W n(tn),W n(τnt )) =
Cov[

√
nW n(tn),

√
nW n(τnt )]√

Var[
√
nW n(t)]Var[

√
nW n(τnt )]

.

We also have that,

Cov[
√
nW n(tn),

√
nW n(τnt )] =

1

2

(
Var[
√
nW n(tn)] + Var[

√
nW n(τnt )]−Var[

√
n(W n(tn)−W n(τnt ))]

)
.

7 Talreja and Whitt (2009) do not condition on Wn(t)> 0. However,
√
n(Wn(t)− w̄) and

√
n(Wn(t)− w̄) have the

same distribution asymptotically in the ED regime, since P(Wn(t)> 0)→ 1.
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We know that
√
n(W n(τnt )−W n(tn))⇒ 0 as n→∞, which follows from Theorem 1 of Ibrahim

et al. (2016), so that Var[
√
n(W n(τnt )−W n(tn))]→ 0. 8 By Lemma EC.3, together with uniform

integrability, we have:

lim
n→∞

Var[
√
nW n(tn)] = lim

n→∞
Var[
√
nW n(τnt )].

By Garnett et al. (2002), we have that
√
nW n(tn) converges weakly to a finite random variable so

that its variance converges as well to a positive constant. Thus,

r[W n(tn),W n(τnt )]→ 1 in the QED regime.

�

EC.4. Proofs of Technical Lemmas
EC.4.1. Proof of Lemma EC.1

Proof. First, we prove part (a). The statement holds trivially for x= 0. Now, for x> 0:

P(W n(τnt )≥ x) = P(W n(τnt )≥ x|W n(τnt )> 0)P(W n(τnt )> 0)

= P(W n
∞ ≥ x|W n

∞ > 0,Dn,En)P(W n(τnt )> 0),

where we define the following events:

• Dn: next arrival after entry to service is delayed

• En: next arrival is before next entry to service

We also note that:

P(W n(τnt )> 0) = 1−P(LES customer finds exactly n− 1 customers in the system upon arrival).

This is so because an LES customer must find at least n−1 customers in the system upon arrival.

To see why, assume, aiming at a contradiction, that LES encounters k < n− 1 customers in the

system upon arrival. Then, it must be that the next arriving customer is not delayed, i.e., the

current customer could not be an LES customer; this is a contradiction. Further,

P(W n
∞ ≥ x|W n

∞ > 0,Dn,En) =
P(En,Dn|W n

∞ ≥ x,W n
∞ > 0)P(W n

∞ ≥ x,W n
∞ > 0)

P(W n
∞ > 0,En,Dn)

=
P(En,Dn|W n

∞ ≥ x)P(W n
∞ ≥ x|W n

∞ > 0)

P(En,Dn|W n
∞ > 0)

= P(W n
∞ ≥ x|W n

∞ > 0),

8 We establish the uniform integrability for {
√
nWn(τnt ), n≥ 1} in the proof of Lemma EC.3.
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since P(Dn,En|W n
∞ ≥ x) = P(Dn,En|W n

∞ > 0). This is so because:

P(Dn,En|W n
∞ ≥ x) = P(Dn|En,W n

∞ ≥ x)P(En|W n
∞ ≥ x)

= P(En|W n
∞ ≥ x) since P(Dn|En,W n

∞ ≥ x) = 1

=
λn

λn +nµ

= P(En|W n
∞ > 0)

= P(Dn|En,W n
∞ > 0)P(En|W n

∞ > 0) since P(Dn|En,W n
∞ > 0) = 1

= P(Dn,En|W n
∞ > 0).

Finally, letting πn−1 denote the probability that the LES customer encounters n− 1 customers

in the system upon arrival, we must have that πnn−1→ 0 as n ↑∞. This is so because for every n

fixed we have
∑∞

k=0 π
n
k = 1 which implies that πnk → 0 as k→∞. Thus, for k≥Mε, we have: πnk < ε.

This implies that for n≥Mε + 1, we must also have that πnn−1 < ε. That is, πnn−1→ 0 as n→∞.

This implies that P(W n(τnt )> 0)→ 1. Thus, we obtain:

lim
n→∞

P(W n(τnt )≥ x) = lim
n→∞

P(W n(t)≥ x) = P(W∞ ≥ x|W∞ > 0),

as desired, where [W∞|W∞ > 0] is the corresponding limiting steady-state distribution which is

proper under both limiting regimes. To show that for every t:

lim
n→∞

Var[W n(τnt )] = lim
n→∞

Var[W n(t)] = Var[W∞ ≥ x|W∞ > 0],

we need to show that uniform integrability of the sequence {W n(τnt ), n≥ 1} holds. To do so, note

that for any x≥ 0:

P[W n(τnt )≥ x] = P[W n
∞ ≥ x|En,Dn]

≤ P[W n
∞ ≥ x|En,Dn,W n

∞ > 0]

=
P[W n

∞ ≥ x,En,Dn|W n
∞ > 0]

P[En,Dn|W n
∞ > 0]

≤ P[W n
∞ ≥ x|W n

∞ > 0]

P[En,Dn|W n
∞ > 0]

≤ P[W n
∞ ≥ x|W n

∞ > 0]
ρn

ρn+1

= P[W n
∞ ≥ x|W n

∞ > 0]
ρn + 1

ρn
.

Thus, for any x≥ 0,

x ·P[W n(τnt )≥ x]≤ x ·P[W n
∞ ≥ x|W n

∞ > 0]
ρn + 1

ρn
.
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This implies,

E[(W n(τnt ))2] =

∫ ∞
0

2xP[W n(τnt )≥ x]dx ≤ ρn + 1

ρn

∫ ∞
0

2xP[W n
∞ ≥ x|W n

∞ > 0]dx

=
ρn + 1

ρn
E[(W n

∞)2|W n
∞ > 0]

< M,

for M <∞ large enough. Thus, supn≥1{E[(W n(τnt ))2]}<∞, and the sequence {W n(τnt ), n≥ 1} is

uniformly integrable: Convergence of moments then follows from the convergence in distribution

together with the established uniform integrability. �

EC.4.2. Proof of Lemma EC.2

Proof. First, note that W n(τnt )
D
= [W n|Sn,An,En] where

• Event Sn: “customer is served”

• Event An: “next arrival after current entry to service is before next entry to service”

• Event En: “next arrival is delayed”

Part (a): The lemma holds trivially at w= 0. Letting w> 0, we have:

P(W n(τn)≥w)

=

∫ ∞
w

fW |A,S,E(x|An, Sn,En)dx

=

∫ ∞
w

fW |S,E(x|Sn,En)P(An|W n = x,Sn,En)P(Sn,En)

P(An, Sn,En)
dx

=
P(Sn,En)

P(An, Sn,En)
×∫ ∞

w

fW |S,E(x|Sn,En)(P(An|Qn = 0,W n = x,Sn,En)P(Qn = 0|W n = x,Sn,En)

+ P(An|Qn > 0,W n = x,Sn,En)P(Qn > 0|W n = x,Sn,En))dx.

Since P(En)→ 1, we can remove it hereafter from the conditioning event since it does not matter

asymptotically. Let Qn be the number of customers left in queue when LES enters service. Note

that [Qn|W n = x,Sn] is distributed as the number of customers at time x in an M/M/∞ queue

starting out empty a time 0 which is Poisson distributed with rate λn

θ
(1− e−θx). Thus, for x> 0,

lim
n→∞

P(Qn = 0|W n = x,Sn) = 0 and lim
n→∞

P(Qn > 0|W n = x,Sn) = 1.

Also, note that P(An|Qn > 0,W n = x,Sn) = λn

λn+nµ
= ρ

ρ+1
. We now show that P(An|Sn,En)→ ρ

ρ+1

as well. This is obtained by a similar conditioning argument, as follows.

P(An|Sn)
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=

∫ ∞
0

P(An|Sn,W n = x)fW (x|Sn)dx

=

∫ ∞
0+

P(An|Sn,W n = x,Qn = 0)P(Qn = 0|Sn,W n = x)fW (x|Sn)dx

+

∫ ∞
0+

P(An|Sn,W n = x,Qn > 0)P(Qn > 0|Sn,W n = x)fW (x|Sn)dx

+ P(W n = 0|Sn)P(An|Sn,W n = 0)P(Qn = 0|Sn,W n = 0)

=
ρ

ρ+ 1

∫ ∞
0+

P(Qn > 0|Sn,W n = x)fW (x|Sn)dx+P(W n = 0|Sn)

→ ρ

ρ+ 1
.

Thus,

lim
n→∞

P(W n(τnt )≥w) = lim
n→∞

P(W n(t)≥w|Sn) = lim
n→∞

P(W n
S ≥w).

We note that we can establish the uniform integrability of {W n(τnt ), n≥ 1} by the following argu-

ment, building on the above:

P(W n(τn)≥w) = P(W n ≥w|An, Sn,En)≤ P(W n ≥w)

P(An, Sn,En)
→ (ρ+ 1)P(W n ≥w),

which follows because: P(An, Sn,En) = P(An|Sn,En) · P(Sn,En)→ ρ
ρ+1

1
ρ

= 1
ρ+1

. Thus, we deduce

that E[W n(τnt )2] =
∫∞
0

2xP(W n(τnt ) ≥ x) ≤ (ρ + 1)E[(W n)2] < M for some large M <∞. Thus,

uniform integrability follows.

Part (b) We use three lemmas.

Lemma EC.4. As n→∞,

√
n

(bntc∑
i=0

Yi,n− c(t)

)
⇒Nor(0, d(t)), (EC.4)

where c(t)≡ 1
θ

ln
(

1 + θt
µ

)
and d(t)≡ t

µ(µ+θt)
for all t≥ 0.

Proof. Let mi ≡E[Yi,n] = 1
nµ+(i+1)θ

and σ2
i ≡Var(Yi,n) =

(
1

nµ+(i+1)θ

)2

. Then, for any t≥ 0:

max0≤j≤bntcm
2
j∑bntc

j=0 m
2
j

→ 0 as n→∞.

By Lemma EC.6 (which applies the Lindeberg-Feller CLT), we must have that∑bntc
i=0 (Yi,n−mi)√∑bntc

i=0 σ
2
i

⇒Nor(0,1). (EC.5)

To obtain (EC.4), note that for every t≥ 0:

bntc∑
i=0

mi→ c(t)≡ 1

θ
ln

(
1 +

θt

µ

)
and n

bntc∑
i=0

σ2
i → d(t)≡ t

µ(µ+ θt)
.
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Therefore, by the continuous mapping theorem,∑bntc
i=0 (Yi,n−mi)√∑bntc

i=0 σ
2
i

=
√
n

∑bntc
i=0 (Yi,n−mi)√
n
∑bntc

i=0 σ
2
i

⇒Nor(0,1) and
√
n

(bntc∑
i=0

Yi,n− c(t)

)
⇒Nor(0, d(t)).

(EC.6)

�

We can use Lemma EC.4 to prove that W n
S and W n have asymptotically the same distribution, as

follows.

Lemma EC.5. As n→∞,
√
n(W n

S −w)⇒Nor(0,
1

θµ
),

where w≡ 1
θ

ln(ρ).

Proof. We can write:

W n
S =

Qn∑
i=0

[Yi,n|Yi,n <T ]
D
=

Qn∑
i=0

Yi,n,

where T ∼ Exp(θ), since the rank ordering of exponentials and their minimum are independent.

Now, using Lemma EC.4 and applying Theorem 6.4 of Talreja and Whitt (2009) yields the conver-

gence. Since we also have that
√
n(W n−w)⇒Nor(0, 1

θµ
), W n

S and W n have the same distribution,

asymptotically.

�

Above, we used the following lemma.

Lemma EC.6. (Resnick, Chap. 9, problem 19) Let U1,U2, · · · ,Uk be a sequence of independent

exponential random variables with respective means mi,1≤ i≤ k. If

max1≤i≤km
2
i∑k

j=1m
2
j

→ 0 as k→∞,

then ∑k

j=1(Uj −mj)√∑k

j=1m
2
j

⇒Nor(0,1).

�

EC.4.3. Proof of Lemma EC.3

Proof. Note that W n(τn) =D [W n|Sn,An,En] where

• Event Sn: “customer is served”

• Event An: “next arrival after current entry to service is before next entry to service”

• Event En: “next arrival is delayed”
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Part (a). For w≥ 0,

P(
√
nW

n
(τ
n
)≥w)

=
1
√
n

∫ ∞
w

fW |A,S,E(x/
√
n|An, Sn,En)dx

=
1
√
n

∫ ∞
w

fW |S,E(x/
√
n|Sn)P(An|Wn = x/

√
n,Sn,En)P(Sn,En)

P(An, Sn,En)
dx

=
1
√
n

P(Sn,En)

P(An, Sn,En)
×

[

∫ ∞
w

fW |S,E(x/
√
n|Sn,En)P(An|Qn/

√
n= 0,W

n
= x/

√
n,S

n
,E
n
)P(Qn/

√
n= 0|Wn

= x/
√
n,S

n
,E
n
)dx

+

∫ ∞
w

fW |S,E(x/
√
n|Sn,En)P(An|Qn/

√
n> 0,W

n
= x/

√
n,S

n
,E
n
)P(Qn/

√
n> 0|Wn

= x/
√
n,S

n
,E
n
))dx].

Note that as n→∞,

P[Qn/
√
n= 0|Wn

= x/
√
n,S

n
,E
n
] = P[Qn = 0|Wn

= x/
√
n,S

n
] =Exp

(
−
λn

θ

(
1− e−θx/

√
n
))
→ 1

and P(An|Qn/
√
n= 0,W n = x/

√
n,Sn,En) = 1. There remains to show that P(Sn,En)

P(An,Sn,En) → 1. To
obtain this,

P(An|Sn,En)

=
1
√
n

∫ ∞
0

P(An|Sn,Wn
= x/

√
n,E

n
)fW (x/

√
n|Sn,En)dx

=
1
√
n

∫ ∞
0

P(An|Sn,Wn
= x/

√
n,Q

n
/
√
n= 0,E

n
)P(Qn/

√
n= 0|Sn,Wn

= x/
√
n,E

n
)fW (x/

√
n|Sn,En)dx

+
1
√
n

∫ ∞
0

P(An|Sn,Wn
= x/

√
n,Q

n
/
√
n> 0,E

n
)P(Qn/

√
n> 0|Sn,Wn

= x/
√
n,E

n
)fW (x/

√
n|Sn,En)dx

→ 1.

Note that we are conditioning on the probability that the next customer is delayed, not the

current one. However, the difference between the arrival times is asymptotically negligible so that

the current customer must have been delayed as well. To establish uniform integrability of the

sequence {
√
nW (τnt ), n≥ 1}, we note that:

P(
√
nW n(τn)≥w)≤ 1√

n

∫ ∞
w

fW |S,E(x/
√
n|Sn)P(An|W n = x/

√
n,Sn,En)P(Sn,En)

P(An, Sn,En)
dx→ P(

√
nW n(tn)≥w),

so that we can bound the second moment of
√
nW n(τn) as in the proof of Lemmas ?? and EC.2.

Part (b). Let w≥ 0,

lim
n→∞

P(
√
nW n

S ≥w|W n
S > 0) = lim

n→∞
P(
√
nW n ≥w|Sn,W n > 0)

= lim
n→∞

P(
√
nW n ≥w,Sn|W n > 0)

P(Sn|W n > 0)

= lim
n→∞

P(
√
nW n ≥w|W n > 0) since P(Sn)→ 1.

�
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EC.4.4. Proof of Lemma 1

Proof. We focus on delays for low-priority customers in what follows. We let γnt denote the time

of entry of the LES customer (of the low type) to service. For x> 0:

lim
n→∞

P(W n(τnt )≥ x)

= lim
n→∞

(P(W n(τnt )≥ x|W n(τnt )> 0)P(W n(τnt )> 0))

= lim
n→∞

P(W n
∞ ≥ x|W n

∞ > 0).

The last step proceeds similarly to our proof for the single-class M/M/n queue, so we omit the

relevant details. There remains to show that P(W n(τnt )> 0)→ 1. For this, we resort to Lemma EC.7

(below) which implies that P(tn−γnt <M)→ 1 for any M > 0 because convergence in distribution

to a constant implies convergence in probability. This implies:

P(W n(τnt ) = 0)

=
n−1∑
k=0

P(LES customers finds k customers in service at τnt )

≤
n−1∑
k=0

P(at least n− k− 1 H arrivals in (τnt , t
n))

=

[
n−1∑
k=0

P(at least n− k− 1 H arrivals in (τnt , t
n)|tn− γn <M)

]
P(tn− γnt <M)

+

[
n−1∑
k=0

P(at least n− k− 1 H arrivals in (τnt , t
n)|tn− γn ≥M)

]
P(tn− γnt ≥M)

≤ e−Cn + e−Kn for some C > 0 by Chernoff bound and K > 0 by proof of Lemma EC.4

→ 0,

so that P(LES customer was delayed) = P(W n(τnt )> 0)→ 1. �

Lemma EC.7. As n→∞,

tn− γnt ⇒ 0.

Proof. Let ξnt ≡ tn− γnt and calculate limn→∞ P(ξnt > x) for x≥ 0. Note that there cannot be

H customers in queue at time γnt . We can write:

P(ξnt >x) =
2∑
i=1

P(ξnt >x|Ai)P(Ai),

where QL denotes the number of L customers in queue and:
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• A1 ≡ {QL > 0 at γnt }; then

P(ξnt >x|A1) ≤ P(at least as many H arrivals as service completions in (0, ξnt ), ξnt >x|A1)

≤ P(at least as many H arrivals as service completions in (0, x)|A1).

By a slight abuse of notation: Conditional on all servers being busy in (0, ξnt ), and in particular

in (0, x): # service completions ∼Poiss(nµx) and # H arrivals ∼Poiss(λnHx), where λnH <nµ.

Indeed, T n ≡ (# H arrivals - # service completions) has a Skellam (λnHx,nµx) distribution so

that, by a bound on its weight at 0:

P(at least as many H arrivals as service completions in (0, x)|A1) = P(T n ≥ 0)≤ e−n(
√
ρHx−

√
x)2→ 0.

• A2 ≡ {QL = 0 at γnt }; then

P(ξnt >x|A2) = P(ξnt >x, no L arrivals in (0, x)|A2)

+ P(ξnt >x, at least one L arrival in (0, x)|A2).

For the first part, note that:

P(ξnt >x, no L arrivals in (0, x)|A2)≤ P(no L arrivals in (0, x))≤ e−λ
n
Lx→ 0.

For the second part, note that:

P(ξnt >x,at least one L arrival in (0, x)|A2)

= P(ξnt >x|at least one L arrival in (0, x),A2)

× P(at least one L arrival in (0, x)|A2).

Now, let sn denote the time of the first L arrival in (γnt , t
n), and define the events:

—En ≡ {at least one L arrival in (0, x),A2}
—F n ≡ {at least 1 new H arrival remaining in queue at sn}
— F̄ n is the complement of F n

Then, for any sn:

P(ξnt >x|En) = P(ξnt >x|En,F n)P(F n|En) +P(ξnt >x|En, F̄ n)P(F̄ n|En)

≤ P(ξnt >x|En,F n)P(F n|En)

+ P(#SC in (sn, tn)≤#H arrivals in (sn, tn)|En, F̄ n)P(F̄ n|En)

→ 0,

where SC denotes “service completions”. This is so because P(F n|En) → 0 and

#H arrivals in (sn, tn)−#service completions in (sn, tn) has a Skellam (λnHx,nµx) distribu-

tion. Thus, P(ξnt >x|A2)→ 0.
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Combining the above steps, we must have that:

tn− γnt ⇒ 0.

�

EC.5. Proof of Proposition 6

Proof. Our proof for Proposition 6 makes use of a coupling argument. Before we get to the

technical details, we begin by presenting the intuition behind our reasoning. The correlation in

(16) can be written as 1/ρ̄, where we define ρ̄ ≡ ρL/(1− ρH). That is, it is of the same form as

the correlation expression in (EC.2), for the overloaded single-class queue with abandonment. This

suggests that, from the standpoint of low-priority customers, the system can be approximated by

an overloaded single-class M/M/n+M queue where a fraction 1− ρH of the available capacity

is unavailable (consistently busy serving H customers). In concert with that intuition, our proof

couples the original system with two bounding systems which, asymptotically, can both be approx-

imated by overloaded single-class queues with traffic intensity ρ̄; we then rely on a sandwiching

argument to obtain the desired convergence for the correlation in (16).

Lower-bound system. We consider a system with two dedicated server pools, L and H, of respec-

tive sizes nL = n−λH and nH = λH . (Here, we ignore integrality for the number of servers, which is

justifiable in large systems.) Let NH(t), NL(t) be the numbers in service, and QH(t), QL(t) be the

numbers in queue, at time t, for the H and L classes, respectively. There is sharing between the

two pools as follows: An arrival of type L may only occupy a server in the H pool if all servers in

the L pool are busy and NH(t)<nH , i.e., there is an idle server in the H pool and no H customers

waiting for it; we assume the same condition for H customers to be served by a server in the L pool.

Otherwise, L customers are served by the L pool, and H customers by the H pool. The service

discipline is work-conserving, i.e., we do not allow a server to idle if there are customers waiting

in line, and we use a FCFS discipline within each class. We couple arrivals in this and the original

system. We assign service times to servers not to customers, and we randomly create new patience

times for all waiting customers at each departure epoch (we can do so because of the exponential

assumption on abandonment times); we do so identically in both systems. We initiate both systems

empty. The lower-bound and original systems will have identical sample paths until a time epoch

t0 where: There is a departure from service from the L pool at t0, and there are customers of both

types waiting in queue. In the original system, an H customer must be served next since she takes

priority over L customers. In the lower-bound system, an L customer must be served instead. We

generate the same service time for both customers. We also regenerate the patience times of all
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customers in queue. Thus, the total number of customers remains identical in both systems, and

only the identity of the customers in service changes. We repeat the same argument for similar

subsequent epochs. In so doing, we ensure that the number of served L customers, at every point in

time, is at least as high in the lower-bound system as in the original system. Therefore, the waiting

time of L customers in the lower-bound system will be smaller, in a stochastic ordering sense.

Upper bound system. Once more, we consider a system with two server pools, L and H, of

respective sizes nL = n−λH and nH = λH . We now assume that H customers have non-preemptive

priority over L customers in the L pool of servers. We also assume that L customers are never

allowed in the H pool. That is, if at time t we have NL(t) = nL, QL(t) > 0, NH(t) < nH , and a

departure from service occurs in the H pool, then the newly freed server waits for subsequent H

customers; i.e., we allow for idling in the H pool. The original and upper bound systems have

identical samples paths until a time epoch t0 where there is an L customer waiting, all servers in

the L pool are busy, no H customers are in queue, and at least one server in the H pool is idle (this

can either be at a departure epoch from the H pool, or an arrival epoch for an L customer). At this

point, we serve the L customer in the original system, and we keep her waiting in the upper bound

system. We regenerate patience times for all customers waiting in either system, and all service

times for customers in service. Proceeding as such at every subsequent such epoch guarantees that

the number of L customers in queue in the original system, at every point in time, is at least

as large in the upper-bound system as in the original system. Therefore, the waiting time of L

customers in the upper-bound system will be larger, in a stochastic ordering sense.

Analysis in the bounding systems. We index processes in the lower-bound system by I, and in

the upper-bound system by II. By the analysis above, the following holds at tn:

W n
I (tn)≤stW n(tn)≤stW n

II(t
n),

where ≤st denotes first-order stochastic dominance. Since the LES customer is some served cus-

tomer, the following must also hold:

W n
I (τnt )≤stW n(τnt )≤stW n

II(τ
n
t ).

This implies:

W n
I (tn) ·W n

I (τnt )≤stW n(tn) ·W n(τnt )≤stW n
II(t

n) ·W n
II(τ

n
t ),

and, taking expectations, we must also have:

E[W n
I (tn) ·W n

I (τnt )]≤E[W n(tn) ·W n(τnt )]≤E[W n
II(t

n) ·W n
II(τ

n
t )].

We now turn to our asymptotic analysis. We let all systems run long enough to reach steady state

and let n ↑ ∞. Consider a single-class M/M/nLB +M system, dedicated to L customers, which
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we denote by “LB”. We let nLB = nL + n
1/2+δ
L servers, for some δ > 0, and identical parameters

for the L class as in our original system. Thus, the “LB” system is an overloaded queue with

traffic intensity ρ̄≡ ρL/(1−ρH). For large n, it is readily seen that W n
LB(tn)≤stW n

I (tn). Similarly,

we consider a single-class M/M/nUB + M system, dedicated to L customers, which we denote

by “UB”. We let nUB = nL − n1/2+δ′

L servers, for some δ′ > 0, and identical parameters for the L

class as in our original system. The “UB” system is also an overloaded queue with traffic intensity

ρ̄≡ ρL/(1− ρH). For large n, it is readily seen that W n
II(t

n)≤stW n
UB(tn). Using Whitt (2004), the

following convergence holds in steady state:

W n
LB(∞)⇒ 1

θ
ln(ρ̄) and W n

UB(∞)⇒ 1

θ
ln(ρ̄), as n→∞,

where “⇒” denotes convergence in distribution. By a sandwiching argument, noting that the covari-

ance Cov[W n
I (tn),W n

I (τnt )] =E[W n
I (tn) ·W n

I (τnt )]−E[W n
I (tn)]E[W n

I (τnt )], we obtain the desired:

r[W n(τnt ),W n(tn)]→ 1

ρ̄
=

1− ρH
ρL

as n→∞.

�

EC.6. Alternative Error Criterion

In this section, we demonstrate that our correlation-based framework continues to apply when

considering an alternative delay criterion which penalizes over and under estimation of delays

in a non-symmetric manner. Shah et al. (2019) considers an alternative Newsvendor-type error

criterion. We define for a predictor P the error criterion:

ERR(P ) = aE[((P −W )+)2] + bE[((W −P )+)2].

Lemma EC.8. If X ≡ P −W has a symmetric distribution around 0, then

ERR(P ) =
a+ b

2
MSE(P ).

Proof.

ERR(P ) = aE[((P −W )+)2] + bE[((W −P )+)2]

= aE
[

1

4
((P −W ) + |P −W |)2

]
+ bE

[
1

4
((W −P ) + |W −P |)2

]
=
a

4

[
E[(P −W )2] +E[|P −W |2] + 2E[(P −W )|P −W |]

]
+
b

4

[
E[(W −P )2] +E[|W −P |2] + 2E[(W −P )|W −P |]

]
=
a+ b

2
MSE(P ) +

a− b
2

E[(P −W )|P −W |].
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Recall that X ≡ (P −W ) is symmetric around 0. Thus,

E[(P −W )|P −W |] =E[X|X|] =E[X21(X ≥ 0)]−E[X21(X ≤ 0)] = 0.

Thus,

ERR(P ) =
a+ b

2
MSE(P ),

as desired. �

There remains to show that the LES and EA predictors satisfy the symmetry property above. We

note that this is true in heavily-loaded large systems. For supporting theory, we refer the reader to

earlier papers demonstrating the asymptotic normality of the waiting time conditional on the LES

prediction in Ibrahim and Whitt (2009a) and Ibrahim and Whitt (2009b) (which consider both

the ED and QED regimes).

EC.6.1. Supporting Numerical Study

In what follows, we present numerical results which substantiate Lemma EC.8 for the LES

announcement. In particular, we consider the single-class M/M/100 model with ρ = 0.98, the

M/M/100+M model with ρ= 1.4, θ= 0.5 and µ= 1, the two-class M/M/100 model with ρL = 0.75

and ρH = 0.23, and the two-class M/M/100+M model with ρL = 1.1, ρH = 0.3, θH = θL = 0.5, and

µL = µH = 1. The point estimates in Table EC.1 are based on averaging 10 independent simulation

runs of length 8 million arrivals each. We consider different values of a and b in Lemma EC.8,

calculate the new errors in the Lemma, and relate them to ASE(LES), also calculated in the same

simulation runs. The values of a and b are chosen so that (a+ b)/2 = 0.5, i.e., we expect to see

that ERR(LES)/ASE(LES) is roughly equal to 0.5. We note that ASE(LES) varies slightly for

different values of a and b because of the different seeds in the simulations. Table EC.1 illustrates

that Lemma EC.8 indeed holds for the LES announcement, particularly when a and b are not too

asymmetric.

EC.7. An Additional Data Set from a Larger Call Center

The real-life data set that we have analyzed in the previous section is taken from a small call center

(number of agents is less than 15). To check the robustness of our results, we now consider an

additional data set taken from a larger call center, where calls are handled by a pool of 200 agents.

In particular, we use data from the call center of a Dutch company which specializes in delivering

business solutions to its clients.
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M/M/100 with ρ= 0.98

a b ASE(LES) ERR(LES) ERR(LES)/ASE(LES)

0.5 0.5 0.00994 0.00497 0.500
0.75 0.25 0.0104 0.00484 0.464
0.25 0.75 0.0104 0.00545 0.535
0.1 0.9 0.00986 0.00552 0.560
0.9 0.1 0.0103 0.00460 0.445

M/M/100 +M with ρ= 1.4

a b ASE(LES) ERR(LES) ERR(LES)/ASE(LES)

0.5 0.5 0.0116 0.00581 0.500
0.75 0.25 0.0116 0.00538 0.463
0.25 0.75 0.0116 0.00625 0.537
0.1 0.9 0.0116 0.00647 0.559
0.9 0.1 0.0116 0.00513 0.440

Two-class M/M/100 with ρL = 0.75 and ρH = 0.23

a b ASE(LES) ERR(LES) ERR(LES)/ASE(LES)

0.5 0.5 0.0229 0.0115 0.500
0.75 0.25 0.0228 0.0103 0.454
0.25 0.75 0.0225 0.0123 0.546
0.1 0.9 0.0231 0.0132 0.572
0.9 0.1 0.0229 0.00980 0.427

Two-class M/M/100 +M with ρL = 1.1 and ρH = 0.3

a b ASE(LES) ERR(LES) ERR(LES)/ASE(LES)

0.5 0.5 0.0304 0.0152 0.500
0.75 0.25 0.0304 0.0136 0.450
0.25 0.75 0.0303 0.0167 0.551
0.1 0.9 0.0304 0.0177 0.581
0.9 0.1 0.0303 0.0127 0.419

Table EC.1 New error criterion for the LES announcement in Lemma EC.8, for alternative values of a and b.

EC.7.0.1. Description of the Data. There are 11 different queues in the call center, and

each queue corresponds to either one or two call types. We focus on one such queue: Queue-30170.

We select this queue because it corresponds to a single call type. However, it is important to note

that it is served by an agent pool which may be serving other call types at the same time. The total

number of agents who serve Queue-30170 is equal to 148. Our data does not contain information

about the routing policy for any of the queues. Thus, it reflects a realistic scenario, where the

manager of the call center has information about the waiting times of customers, but the routing

itself may be done in an ad-hoc manner. The call center is closed on Sundays. The average wait
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time for delayed customers is close to 90 seconds, and the probability of abandonment is close to

6%.

Our data for Queue-30170 is from May 9, 2012 until September 29, 2012. There are close to 50,000

delayed customers in that set. For each delayed customer, we proceed as before and calculate the

LES prediction, the running average wait-time prediction, and the WA prediction which is based

on a point estimate of the correlation. We calculate out-of-sample estimates for the correlation

and the average waiting time based on a sample of 10,000 delayed customers. We then discard this

sample from consideration when calculating the errors corresponding to our alternative predictions.

As such, we are left with predictions for a total of 98 consecutive days. For each of the average

wait-time and correlation estimates, we include a weekday effect. To compare the accuracies of our

alternative predictions, we focused on delays which exceeded 5 seconds.

EC.7.0.2. Accuracy of the WA Prediction. We present in Table EC.2 results which paral-

lel those that we reported in Table 9. Based on Table EC.2, we can make the following observations.

First, the LES prediction is increasingly accurate as the size of the system grows. This is to be

expected, and is in concert with previous theoretical results establishing the asymptotic accuracy

of the LES prediction in large queueing systems, e.g., see Ibrahim et al. (2016). In particular, the

LES prediction performs generally better than the average-waiting-time prediction in this case.

Second, our new proposed WA prediction has a clear superior performance compared to both the

LES and EA predictions. Indeed, WA “wins” on close to 75% of the days in our sample. Third,

by restricting attention to days where the LES announcement yields the smallest daily error on

average (first column in Table EC.2), we see that it outperforms the EA prediction by a lot in this

case: Indeed, the ASE for EA is roughly 13 times the ASE for the LES announcement in that case.

In other words, announcing the average can lead to considerable errors. Finally, we have further

evidence that WA is a good announcement in practice: Even when WA is not the most accurate

prediction, it remains competitive, i.e., there do not exist days when it is dramatically outperformed

by either the LES announcement or EA.

Queue-30170

Ratios of (row) ASE to (column) winner ASE
EA wins (8%) WA wins (74%) LES wins (17%) Overall

EA 1 2.42 13.1 4.09
WA 1.30 1 2.40 1.25
LES 2.03 1.43 1 1.39

Table EC.2 Comparison of the ASE’s of EA, WA, and LES for Queue-30170. In each column, we report

estimates of the ratio of the ASE of the prediction in the corresponding row, relative to the ASE of the predictor

in the corresponding column.
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EC.8. Additional Numerical Results: Time-Varying Arrivals

We now consider time-varying arrival rates. This is practically important because arrival processes

to service systems, in real life, typically vary significantly over time. We consider a sinusoidal

arrival-rate intensity function to mimic cyclic behavior that is common in arrival processes to

service systems:

λ(u) = λ̄+ λ̄α sin(γu), for 0≤ u<∞ , (EC.7)

where λ̄ is the average arrival rate and α is the relative amplitude. Given an appropriate constant

staffing level, this arrival-rate function corresponds to alternating periods of underload and overload

in the system. As pointed out by Eick et al. (1993), the parameters of the arrival-rate intensity

function, λ(u) in (EC.7), should be interpreted relative to the mean service time. Then, we speak of

γ as the relative frequency. Table EC.3 displays values of the relative frequency as a function of the

mean service time, assuming a daily cycle. For interpretation, we also will specify the associated

mean service time in minutes, given a daily cycle. Small (large) values of γ correspond to slow

(fast) time-variability in the arrival process, relative to the service times.

γ Cycle length Mean service time

0.0436 144 10 minutes
0.262 24 1 hour
1.571 4 6 hours

Table EC.3 The relative frequency is the frequency computed with measuring units so that the mean service

time is equal to 1.

In Table EC.4, we consider a two-class queueing system with time-varying arrivals, and focus on

low-priority customers, as before. We hold the values of ρH and ρL fixed, and vary γ to increase the

frequency in the time-varying arrivals. We let the amplitude be fixed as well: α= 0.3. We consider

Markovian queues only, to focus on the effect of the time variation in the arrival rates.

Based on Ibrahim and Whitt (2011), we know that the LES prediction can be biased with

time-varying arrivals, because delays then vary systematically over time. Thus, the assumptions

of Proposition 1, namely that the LES prediction is unbiased and has the same variance as the

steady-state delay, fail to hold. Therefore, it is not clear whether the superior performance of the

WA predictor, as derived in §4.3, will continue to hold in this case. Indeed, inspecting the point

estimates of the correlation in Table EC.4, we find that these estimates vary considerably with

γ, even when the traffic intensities in the system are held fixed. Thus, we do not expect simple

expressions for the correlations, such as those derived in §5, to continue holding with time-varying

arrivals. In comparing ASE(WA) and ASE(WA-run), we find that, while these two predictors
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remain generally close, WA-run performs slightly better than WA, particularly when γ is large.

Interestingly, we find that both WA and WA-run remain superior to both the LES announcement

and EA, in almost all cases considered (the only exception is for γ = 1.571 and no abandonment,

in which case EA is superior). This shows that our new WA predictor is robust to time-variation

in the arrival rates as well.

Mt/M/30 with two classes and sinusoidal arrival rates

γ ρL ρH LES EA WA WA-run EXP Corr E[W |W > 0]

0 0.2 0.5 0.322 0.279 0.272 0.270 0.343 0.284 0.221

0.0436 0.2 0.5 0.773 0.905 0.746 0.714 0.903 0.637 0.724

0.262 0.2 0.5 0.668 0.646 0.588 0.587 0.671 0.450 0.549

1.571 0.2 0.5 0.384 0.313 0.316 0.310 0.392 0.183 0.271

Mt/M/100 +M with two classes and sinusoidal arrival rates

γ ρL ρH LES EA WA WA-run EXP Corr E[W |W > 0]

0 0.3 0.5 0.107 0.101 0.0946 0.0934 0.132 0.412 0.0857

0.0436 0.3 0.5 0.233 0.273 0.215 0.214 0.408 0.641 0.303

0.262 0.3 0.5 0.224 0.252 0.204 0.204 0.334 0.606 0.274

1.571 0.3 0.5 0.153 0.140 0.133 0.131 0.187 0.391 0.137

Table EC.4 Comparison of the square-root ASE’s of the different predictions for low-priority customers and

time-varying arrivals. We let α= 0.3 and consider alternative values of γ.

EC.9. Additional Numerical Results: Customer Response

In this section, we consider a balking function, β0(w), for which the assumptions of Ibrahim et al.

(2016) are violated. In particular, the function β0(w) is both non-monotone and discontinuous at

w= 0.1, i.e., it violates both the continuity and monotonically increasing assumptions of Ibrahim

et al. (2016):

β0 =

{
w

1+w
if w≤ 0.1

exp(−θw) otherwise.
(EC.8)

In this case, we investigate the performances of LES and EA in the M/M/100 + M model for

varying values of ρ, and report corresponding estimates for the correlations. First, we note that

the conditions of Corollary 1 are violated, i.e., we do not have that β = γ = 1. Nevertheless,

Proposition 1 continues to hold as we illustrate in Table EC.5. There, we report point estimates

of β, γ, CWD
, and r as given in the proposition (we add a hat notation to estimates). We also
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let A ≡

(
β̂+ 1 +

(
γ̂−1
ˆCWD

)2

− 2 · r̂[P,WD]

√
β̂

)
. According to Proposition 1, we should have that

ASE(LES) is roughly equal to A× ASE(EA). Table EC.5 shows that this is indeed the case. We

also note that Corollary 1 does not hold in this case: For example, we see that for ρ = 1.2 and

ρ= 1.4, we have that the correlation estimate r̂ > 0.5, yet ASE(LES) > ASE(EA).

ρ 1/ρ ASE(LES) ASE(EA) r̂ γ̂ β̂ ĈWD
A ASE(LES)/ASE(EA)

1.2 0.833 0.00175 0.00191 0.566 0.67 0.499 0.713 0.913 0.913

1.4 0.714 0.00255 0.00246 0.533 0.635 0.442 0.661 1.038 1.038

1.6 0.625 0.00356 0.00301 0.493 0.598 0.421 0.636 1.181 1.183

1.8 0.556 0.00478 0.00358 0.445 0.569 0.420 0.617 1.332 1.335

2.0 0.5 0.00623 0.00419 0.390 0.544 0.433 0.607 1.485 1.486

Table EC.5 Point estimates of ASE’s and correlations in the heavily-loaded M/M/100 +M queue where

customers balk with probability β0(w) in (EC.8).

EC.10. Additional Empirical Results

In this section, we describe additional results quantifying the performance of our alternative

announcements with the small call-center data set analyzed in §6.2. In §EC.10.1, we consider an

alternative EA prediction where we announce a running-average waiting time which we contin-

uously update. That is, we do not consider a static announcement calculated out-of-sample as

in the main paper. In §EC.10.2, we present yet another EA-type announcement which accounts

for seasonal effects by incorporating a day-of-week effect. In §EC.10.3, we present results for tow

additional call types, NE (stock exchange activity) and NW (potential new customers getting

information). In §6.3, we consider a data-based predictor which exploits information about the

queue-length seen by a delayed customer upon arrival. We present additional tabular results in

§EC.10.4.

EC.10.1. Running Average Waiting Time

In this section, we consider a continuously updated EA announcement; thus, we consider our entire

data set and do not remove a sample where we compute an out-of-sample estimate for EA as we

did in the main paper. We denote that new prediction by EA-C. In Table EC.6, we parallel Table

9 in §6.2: We take a closer look at performance and present data estimates for the ratios of the

ASE’s of our three predictors. The first sub-table corresponds to IN callers, whereas the second

sub-table corresponds to low-priority PS callers. Each column in the table corresponds to days
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where one of the predictors yields the smallest ASE. For example, for the first column, we restrict

attention to those days where the LES announcement yields the smallest ASE: For IN calls, the

LES announcement yields the smallest ASE on only 4 days out of 106.

Table EC.6 shows that WA continues to have superior performance over both EA-C and the LES

announcement. It is worth noting however that, unlike in Table 9, on the 4 days where the LES

announcement yields superior performance over both WA and EA-C, it significantly outperforms

those predictors (as can be seen from the first column of the table). Upon closer inspection, we

see that, on those four days, customer delays were considerably shorter than usual: The average

waiting time on those days is 57 seconds, whereas it is 140 seconds over the entire sample. (We

note in passing that three our of these four days fell in the sample that we had initially removed

to calculate an out-of-sample estimate of EA.) Thus, since customers have short delays on those

days, both the WA and EA-C predictions perform poorly since they fail to capture that these days

have unusually short delays.

IN Call Type

EA-C wins (32.0%) WA wins (64.2%) LES wins (3.8%)

EA-C/winner 1 1.22 5.48
WA/winner 1.04 1 3.50
LES/winner 2.12 1.70 1

PS Call Type

EA-C wins (13.1%) WA wins (76.6%) LES wins (10.2%)

EA-C/winner 1 1.49 2.38
WA/winner 1.03 1 1.59
LES/winner 2.02 3.82 1

Table EC.6 Comparison of the ASE’s of EA-C, WA, and LES in August-December for IN and PS customers.

For EA-C, we use a running average that is continuously updated (not calculated out of sample). In each column,

we report estimates of the ratio of the ASE of the prediction in the corresponding row, relative to the ASE of the

predictor in the corresponding column.

EC.10.2. Day-Of-Week Effect

In this section, we present results for yet another EA-based prediction. In particular, we account

for day-of-week seasonality in calculating the EA announcement, i.e., we make a different EA

announcement based on the day of week. We present detailed results in Tables EC.8 and EC.9,

which we relegate to §EC.10.4. When inspecting the results of those tables, we noticed that the

seasonally-adjusted EA announcement, which we denote by EA-DOW, does not perform better

than the EA announcement for IN callers. To explain why that is the case, we plot Figures EC.1
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Figure EC.1 Moving average (window = 100) on

Mondays.
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Figure EC.2 Moving average (window = 100) on

Wednesdays.
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Figure EC.3 Moving average (window = 10) for

squared errors of announcements.
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Figure EC.4 Moving average (window = 10) for

squared errors of announcements.

and EC.2 where the curves correspond to moving averages of delays on Mondays and Wednesdays

for IN callers. In calculating the EA-DOW estimates, we take the first 2000 callers as our out of

sample, which clearly correspond to longer delays, as the Figures show. Considering the overall EA

average, as we did in the main paper, smoothes out those systematic changes in delays that were

observed in the data (unfortunately, we do not have an explanation for what happened on those

days). Nevertheless, Figures EC.3 and EC.4 show that we continue to observe the superiority of

the WA-DOW prediction over both the LES announcement and EA-DOW. In these figures, we

plot moving averages of the squared errors with a centered window of length 10.
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EC.10.3. Results for Alternative Call Types

We include results for the NE and NW types in Table EC.7; this Table parallels Table EC.6: As

before, we observe that WA is superior to the remaining predictions.

NE Call Type

EA wins (20.0%) WA wins (71.4%) LES wins (8.5%)

EA/winner 1 1.35 4.69
WA/winner 1.19 1 2.23
LES/winner 2.63 1.82 1

NW Call Type

EA wins (16.2%) WA wins (79.0%) LES wins (4.8%)

EA/winner 1 1.13 9.42
WA/winner 1.71 1 5.76
LES/winner 13.12 1.93 1

Table EC.7 Comparison of the ASE’s of EA, WA, and LES in August-December for IN and PS customers. For

EA, we use a running average that is continuously updated (not calculated out of sample). In each column, we

report estimates of the ratio of the ASE of the prediction in the corresponding row, relative to the ASE of the

predictor in the corresponding column.

EC.10.4. Detailed Tabular Results

Day index LES EA EA-DOW WA WA-DOW

1 56989 30413 30333 32542 33205
2 9149 14570 19737 9322 12061
3 21244 17901 18061 13988 14067
4 29101 21381 22558 18790 19180
5 22898 14239 12708 12893 12328
6 29561 14403 17188 13155 14103
7 22349 16054 16171 12790 12836
8 6775 10679 12235 5189 5854
9 56844 21710 21579 24632 22952
10 19173 12449 10458 10074 9370
11 9167 18106 23629 11163 13951
12 15099 12453 12607 8886 8958
13 44859 21545 24403 21784 23097
14 11380 10315 10450 6544 6606
15 5776 13059 14910 6398 7271
16 12757 11324 16045 7203 9429
17 20390 14497 12866 12269 11573
18 9084 11520 16208 6336 8660
19 23289 12899 12995 11003 11028
20 125855 96237 96112 100463 99972
21 14161 2968 6075 170 954
22 49823 23798 24085 24543 24187
23 154173 76856 72893 80711 78190
24 23299 17270 14533 14187 12897
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Day index LES EA EA-DOW WA WA-DOW

25 57191 25053 27055 24767 25553
26 51238 29925 29971 28429 28443
27 38426 14920 15120 15660 15529
28 4251 11966 17631 4651 7382
29 149194 76286 77503 82586 83961
30 19882 14764 17769 12556 13776
31 51174 26238 26252 26889 26872
32 61803 26728 26551 29635 28926
33 46554 19895 18535 18792 17800
34 41546 20433 22460 19394 20137
35 125947 60480 60558 64087 64127
36 8402 11549 13156 6893 7658
37 162221 104087 99880 112858 108128
38 124690 90693 92573 86387 87901
39 35120 16553 18547 16280 16685
40 149411 56350 56349 61022 61017
41 12871 11591 13278 8155 9016
42 25160 14314 17467 11433 12253
43 3844 12427 18209 4905 7725
44 27726 20422 18928 18772 18367
45 221396 170461 166953 171166 167802
46 25876 9519 9580 9443 9447
47 12869 13052 14942 10040 11103
48 43232 16858 19186 16767 17713
49 52617 23327 23230 24956 25449
50 58500 39435 41608 39134 39482
51 38822 25770 25879 24029 24061
52 13208 10411 11888 5607 6157
53 91173 47784 47534 46936 46799
54 71329 36111 34857 37204 36787
55 30650 23900 27035 20902 21936
56 22084 13134 13257 10645 10688
57 56778 31018 31267 32185 31828
58 20469 14537 17599 12225 13679
59 57450 33307 33630 33045 33830
60 11077 13446 17389 9374 11226
61 84647 66742 66674 66620 66552
62 22474 24852 25807 20780 21098
63 107035 37727 39019 39615 40897
64 137283 65270 66412 70240 71105
65 40456 25570 27502 25493 26026
66 19517 14023 14134 11689 11728
67 32390 20234 22746 18438 18990
68 60359 29902 29259 30160 30430
69 75857 32682 33933 34358 34481
70 37744 16106 16192 16230 16256
71 7240 10308 11995 5973 6824
72 98209 48862 48386 45531 45191
73 116258 84542 85953 83132 84421
74 70747 29064 30358 30342 31129
75 21780 15826 15953 12197 12238
76 16756 9446 10359 7618 7961
77 36619 23854 26279 21799 22955
78 17524 14766 12963 11567 10875
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Day index LES EA EA-DOW WA WA-DOW

79 50021 29775 31062 29769 29887
80 11892 15891 16067 10273 10354
81 9035 12558 14391 6799 7659
82 29201 17755 21226 15496 17241
83 39211 20788 19419 20408 20037
84 25180 18104 21442 14222 15804
85 62359 39077 39116 40176 40155

Table EC.8: Daily ASE for all predictors from August to December
for IN customers.

Day index LES EA EA-DOW WA WA-DOW

1 3732 7223 6828 5695 5429
2 5132 6927 7383 5647 5953
3 9001 6523 5800 5980 5512
4 13441 10868 10946 9753 9759
5 3621 8200 4185 6317 3561
6 5042 7602 7173 6157 5861
7 6382 5913 6296 4881 5129
8 24498 13150 13129 12977 12934
9 63404 21849 21687 21949 21944
10 28442 15562 15450 14472 14261
11 21377 10176 9957 10360 10136
12 5992 6743 5693 5646 4889
13 31664 18537 18628 17933 17983
14 38433 17955 17784 17639 17567
15 19829 8632 8631 8782 8704
16 32876 15853 16783 15248 15736
17 18765 8886 8787 8992 8914
18 9141 9418 9734 8011 8220
19 5159 5325 4465 4371 3791
20 15636 7244 5889 7178 6100
21 7249 5808 3993 5168 4075
22 7468 5333 5233 4784 4902
23 7996 8499 8909 7271 7551
24 18617 9949 9783 9902 9767
25 8447 7760 6055 6706 5529
26 6573 6351 6081 5455 5272
27 8931 6503 6740 5986 6146
28 11781 7630 7192 7140 6822
29 2914 7489 5242 5486 3968
30 12035 8007 7787 7162 7003
31 4335 6667 7155 5201 5528
32 24707 14765 14480 13278 13017
33 4710 6525 4798 5181 4040
34 7640 6683 6386 5860 5666
35 4918 7167 7664 5705 6046
36 9188 6969 6165 6308 5769
37 6645 5676 4441 4925 4147
38 23812 16668 16819 14735 14805
39 7898 5965 6265 5370 5569
40 22735 13026 13081 12122 12066
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Day index LES EA EA-DOW WA WA-DOW

41 11989 6594 5919 6603 6385
42 2917 7441 3260 5509 2656
43 25 13473 7082 9089 4745
44 5926 6052 2834 5231 2937
45 2783 7230 6800 5340 5053
46 8495 7480 7864 6418 6668
47 7898 6613 5856 5861 5343
48 7426 5589 4521 5050 4369
49 3947 7236 6822 5551 5273
50 6398 6983 7424 5733 6020
51 6545 4967 4211 4460 3938
52 6842 6802 5373 5644 4661
53 5347 5296 2895 4397 2892
54 6857 6787 6526 5656 5498
55 6643 6911 7384 5772 6094
56 3697 6882 5785 5259 4519
57 8304 5363 4325 5053 4358
58 15705 14988 17133 13781 15517
59 7893 7045 6807 6165 6007
60 3423 7484 8064 5664 6058
61 6186 8079 6855 6388 5547
62 7918 7612 6151 6378 5360
63 2251 8781 6245 6328 4600
64 826 5497 2062 3808 1499
65 5184 2408 294 803 4
66 12187 9741 9570 9105 8991
67 9423 7267 7694 6552 6843
68 2372 6590 5364 4804 3982
69 9112 7702 6245 6407 5601
70 10558 8891 7514 7960 6994
71 9278 6264 6092 5776 5654
72 12634 6632 6866 6475 6653
73 6538 6881 6114 6100 5588
74 8889 8011 6566 7049 6018
75 13483 7857 7755 7634 7547
76 5408 7724 8201 6249 6570
77 4165 7912 6586 6419 5464
78 6243 5350 4454 4789 4242
79 13374 9041 9044 8510 8482
80 76935 30943 31261 28133 28253
81 9842 6659 6964 5962 6178
82 39061 14801 14921 15364 15396
83 32097 16025 17896 15633 16553
84 20959 11000 11831 11405 12047
85 7063 6785 5173 5688 4668
86 45734 20664 20818 20832 20890
87 18951 11810 11894 10765 10853
88 15405 9545 9240 9437 9244
89 7440 6126 4884 5492 4607
90 19011 10758 10770 10408 10411
91 23340 13578 13475 13254 13201
92 26642 15645 15975 15598 15817
93 10057 5137 4277 5053 4456
94 36332 16951 19512 16447 17722
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Day index LES EA EA-DOW WA WA-DOW

95 33057 16867 16911 16258 16266
96 15172 9294 9387 8903 8972
97 5512 6802 5679 5452 4695
98 5235 6782 5226 5377 4404
99 7115 7417 5334 6303 4916
100 15914 9077 8981 8491 8411
101 12079 8351 8636 7724 7924
102 4632 6737 3905 5386 3449
103 19149 10097 9970 9891 9793
104 12351 7504 7680 7246 7380
105 4976 5462 4581 4368 3804
106 2060 9829 8217 7142 6031
107 1238 9705 6964 6786 4917
108 11935 6064 5628 5963 5592

Table EC.9: Daily ASE for all predictors from August to December
for low priority PS customers.


