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One prevalent assumption in queueing theory is that the number of servers in a queueing model is

deterministic. However, randomness in the number of servers often arises in practice, particularly when the

servers themselves may be viewed as strategic decision makers, e.g., in virtual call centers or ride-sharing

services where agents are allowed to set their own schedules, often at very short time notice. In this paper,

we study the problem of staffing many-server queues with generally-distributed customer abandonment and

a random number of servers. We rely on fluid approximations to determine cost-minimizing staffing levels in

that setting, and we demonstrate the asymptotic accuracy of fluid-based performance measures and staffing

prescriptions. For an application, we characterize the optimal staffing policy with self-scheduling servers, and

show that this policy is not straightforward: It may be optimal to either understaff or overstaff the system,

depending on (i) self-scheduling agent behavior and (ii) the abandonment-time distribution.
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1. Introduction

There is a broad literature in queueing theory which studies the problem of staffing large-scale

service systems. This literature has important practical implications for the design of those systems;

e.g., for surveys of applications in call-center management, see Gans et al. (2003) and Akşin et al.

(2007). Much of that body of research formulates staffing recommendations based on queueing

models with several realistic features, such as time-varying parameters and non-standard network

structures. However, one prevalent assumption in those models is that the (possibly time-varying)
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number of servers is deterministic. As such, the realized staffing level in any given time period is

assumed to be equal to the planned staffing level, set by the system manager, for that period.

The purpose of this paper is to study the staffing problem in many-server queueing systems with a

random number of servers. (Throughout this paper, we use “servers” and “agents” interchangeably.)

Uncertainty in the number of servers may arise due to novel work arrangements, such as in virtual

call centers, where agents set their own schedules (Gurvich et al. 2015). It may also arise in work

environments where there is significant non-adherence to planned schedules, e.g., when frequent

absenteeism is common, as for nurses in healthcare systems (Green et al. 2013), or call center

representatives in physical call centers (Whitt 2006b). In all of those examples, agents may be

viewed as being strategic, i.e., they are decision makers who choose whether or not to be available

for work in a given period so as to maximize their individual utilities.

1.1. Motivating Applications

Virtual call centers. In virtual call centers, call center representatives (agents) are home-based

and have the flexibility of determining their own working shifts, often at very short time notice. We

refer to such agents as self-scheduling. Managing systems with self-scheduling agents involves two

different time scales: (i) weeks ahead of time, the system manager selects the total staffing level in

the system e.g., to allow sufficient time for agent training and qualification; and, (ii) hours ahead

of time, or less, agents select their own schedules. Since the agent population is both remote and

large (up to hundreds of agents), system managers cannot simply solicit their agents’ scheduling

preferences ahead of time. Moreover, the promised scheduling flexibility constitutes the main appeal

of this type of jobs, and cannot be simply restricted by the firm (Arise 2015, CloudSource 2015,

GreatVirtualWorks 2015, LiveOps 2015, WestatHome 2015).

Ride-sharing services. Ride-sharing services, such as Uber, also allow their drivers to self-

schedule. They use “surge pricing” (Uber 2015) to ensure the participation of a sufficient number of

drivers in different time periods. Since flexibility is important for drivers and cannot be restricted

(Hall and Krueger 2015), the firm is faced with the problem of deciding on the number of self-

scheduling drivers to hire (FastCompany 2015, Gurvich et al. 2015).
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Allowing agents to self-schedule raises important operational challenges: It could lead to low

levels of service, i.e., high customer-related costs, in understaffed working periods. Conversely, it

could also lead to overstaffed working periods where customer-related costs are low, while staffing

costs are too high. In setting appropriate staffing levels, system managers need to account for the

uncertainty in the numbers of agents who will be present in different shifts.

Agent absenteeism. Uncertainty in the number of available agents may also arise in work envi-

ronments where there is significant non-adherence to planned schedules, e.g., due to prevalent agent

absenteeism. For example, it is well known that nurse absenteeism is a considerable problem in

healthcare settings (US Bureau of Labor Statistics 2008, BBC 2015). As a result, the actual num-

ber of nurses who show up for work, in a given period, is uncertain. The same phenomenon can

also be observed in physical call centers which are plagued with low employee satisfaction and con-

siderable absenteeism (Whitt 2006b). When setting staffing levels in such systems, it is important

to account for subsequent agent absenteeism. Indeed, Green et al. (2013) show that failing to do

so (with workload-dependent nurse absenteeism) typically results in understaffing the system. In

contrast, we show here to it may lead to either overstaffing or understaffing the system, depending

on strategic agent behavior and other model characteristics.

1.2. Framework, Contributions, and Organization

In this paper, we consider many-server queueing models with generally-distributed customer aban-

donment, generally-distributed service times, a stationary arrival process, and a random number

of servers. We assume that there are k working periods, and that agents have inherent, heteroge-

nous, availabilities or preferences for different periods; e.g., in virtual call centers, agents who are

parents may value morning shifts more because they may be busy with family obligations in the

afternoon. We assume that there is a fixed staffing cost per server, depending on the period. First,

the system manager decides on the total staffing level, n. Then, each agent in the pool of size n

has, independently of other agents, a fixed probability, rj, of being available for work in period j,

1 ≤ j ≤ k. The derivation of rj depends on the specific application context in mind; we provide
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details in §3. For example, depending on the specific application in mind, we may require that∑k

j=1 rj = 1. As a result of those system dynamics, the (marginal) distribution of the number of

available agents in period j, Nn
j , is binomial with parameters n and rj.

Our objective is to determine n optimally so as to minimize the expected total system cost,

which is the sum of staffing and customer-related costs, across all working periods. In other words,

we focus on the long-term planning problem faced by the managers of such systems. Since the

staffing problem, even with a deterministic number of servers, is not amenable to exact analysis, we

determine optimal staffing levels by solving its fluid approximation, drawing on Whitt (2006a,b)

and Bassamboo and Randhawa (2010). Our modelling framework is closest to Harrison and Zeevi

(2005), Bassamboo et al. (2005, 2006) and Bassamboo and Randhawa (2010) because they all

exploit fluid models in setting staffing requirements. However, in all of those papers, unlike in ours,

the number of servers is assumed to be deterministic. Here are the main contributions of this paper.

Methodology: Asymptotic accuracy of fluid prescriptions. Fluid approximations are well

known to be useful in describing the behavior of large, especially overloaded, queueing systems (Dai

and He 2012). However, there remains to show whether they could be reliably used to approximate

expected performance measures in queueing systems where the number of servers is random. In

such systems, those measures must be computed by conditioning (and unconditioning) on the

possible realizations of the number of servers. Since those alternative realizations correspond to

different workloads (e.g., the system could either be underloaded or overloaded depending on the

realized number of servers), it is not clear, a priori, what the resulting “weighted average” system

performance is, or what would be a good choice for an approximating fluid model.

In this paper, we define fluid approximations by substituting the random number of servers

in the original queueing system by its expected value, and deriving fluid approximations for the

resulting system. Our objectives are to investigate whether the ensuing approximations could be

used to: (i) approximate expected performance measures in the original system; and (ii) determine

staffing levels that minimize the expected cost in the original system.
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With those objectives in mind, we extend the results of Bassamboo and Randhawa (2010) to

systems with uncertainty in the number of servers. In particular, we characterize the asymptotic

(i.e., when the arrival rate is large) accuracy of fluid approximations and prescriptions with a

binomial number of servers in the overloaded, critically-loaded, and underloaded regimes. Since the

actual number of servers is random, we define those operational regimes relative to the expected

number of servers instead (§4). For analytical tractability, we assume exponentially-distributed

service times and a Poisson arrival process (along with generally-distributed times to abandon).

It is insightful that the underloaded regime is of interest when the number of servers is random.

Indeed, it may be asymptotically optimal to purposely overstaff the system in that case (§6). In

contrast, the underloaded regime is never asymptotically optimal when the number of servers is

deterministic. In the overloaded regime, we show that the accuracy gap of fluid approximations

does not increase with the arrival rate, although the performance metrics themselves do. Thus, fluid

approximations are “extremely accurate” in that case. In the underloaded regime, we show that

the fluid accuracy gap decreases in the arrival rate; in the critically-loaded regime, we show that it

is of the order of the square root of the arrival rate. In both the underloaded and critically-loaded

regimes, performance measures are asymptotically negligible. For all three operational regimes, we

demonstrate that fluid-based staffing prescriptions are asymptotically accurate (Theorem 2).

Our asymptotic results provide general theoretical support to the usefulness of simple fluid

approximations in staffing queueing systems where there is uncertainty in the number of servers.

Doing so is important because such queueing models are becoming increasingly relevant in practice,

as explained in §1.1. Thus, studying ways of reliably approximating their dynamics is of interest.

Application: Staffing with self-scheduling servers. We apply fluid approximations to deter-

mine optimal staffing levels with self-scheduling servers, generally-distributed service and aban-

donment times, and a stationary arrival process. For simplicity, we assume that there are only two

periods in any day, and that agents must select to work in exactly one of those two periods (similar

insights can extend to multiple periods too). The two periods represent e.g., daily and nightly
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shifts. In particular, we are thinking of virtual call centers who treat their agents as employees

rather than independent contractors. Typically, virtual agents who are employees earn a base wage

(and possibly other benefits), are subject to a requirement on the minimum number of working

hours (usually 15-20 hours/week), and are otherwise free to select one of several available shifts;

e.g., see CloudSource (2015), GreatVirtualWorks (2015), and WestatHome (2015). In contrast,

virtual agents who are independent contractors are usually not guaranteed a minimum wage and

have no requirement on the least number of working hours to be fulfilled; e.g., as for LiveOps

(2015) or Arise (2015). We describe the optimal staffing policy, as follows.

In a system where the critically-loaded regime is asymptotically optimal for both periods (without

self-scheduling), we show that the optimal staffing policy in response to self-scheduling is not

straightforward. In particular, we demonstrate that it may be optimal to either understaff or

overstaff the system, and characterize how the optimal staffing policy depends on both strategic

agent behavior and the abandonment-time distribution. We also show that the optimal staffing

policy depends solely on the proportion of agents who prefer one period over another, but is

otherwise independent of further distributional assumptions on agents’ per-period utilities.

Numerical study. We conduct a numerical study with alternative abandonment-time distribu-

tions to: (i) provide numerical confirmation for our asymptotic accuracy results and (ii) extend

our analysis to more general settings. For one example, we verify numerically that our asymptotic

results extend to general service times as well; see Tables 4 and 5 in the appendix. For a second

example, we study staffing decisions in systems where the overloaded regime is asymptotically opti-

mal without self-scheduling agents. To illustrate the practical usefulness of our asymptotic results,

we consider, throughout, systems which are not too large in size (tens of servers), and show that

our approximations remain useful in describing the expected performance of those systems.

The remainder of this paper is organized as follows. In §2, we review the relevant literature. In

§3, we describe our modelling framework and the system manager’s problem. In §4, we formulate

our main theoretical results concerning the asymptotic accuracy of the fluid prescription. In §5, we
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prove our main results for the overloaded regime. In §6, we formulate staffing recommendations

with self-scheduling agents. In §7, we describe our numerical results. In §8, we draw conclusions.

We relegate other technical proofs to the appendix.

2. Related Literature

Our paper is related to the extensive literature analyzing asymptotics of many-server queueing

systems with impatient customers; see Garnett et al. (2002), Ward and Glynn (2003), Zeltyn and

Mandelbaum (2005), Whitt (2004, 2006a), Bassamboo and Randhawa (2010), Bassamboo et al.

(2010), and references therein. It is also related to the large literature on optimal staffing decisions

in service systems, e.g., including Maglaras and Zeevi (2003), Borst et al. (2004), Harrison and

Zeevi (2005), and Bassamboo et al. (2005, 2006); for other references, see Gans et al. (2003) and

Akşin et al. (2007). However, none of those papers considers a random number of servers.

To the best of our knowledge, the only two papers that study queueing systems with a random

number of servers are Whitt (2006b) and Atar (2008). Whitt (2006b) considers many-server queues

with an uncertain arrival rate and an uncertain number of servers. However, the focus of that paper

is primarily on a numerical investigation of fluid-based prescriptions. As such, our results provide

further theoretical grounding to the insights of that paper. Atar (2008) derives a diffusion limit for

the number of customers in a system with a random number of servers and random service rates,

but no customer abandonment. However, the staffing question is not addressed in that paper.

Our work is also related to the area of queuing games, reviewed in Hassin and Haviv (2003),

which mostly focuses on the impact of customers acting strategically. There is a body of work

within this literature which considers strategic servers that may select their service rates; e.g., see

Cachon and Harker (2002) and Cachon and Zhang (2007). However, such papers do not consider

staffing decisions, and the maximum number of servers considered is two. Recent exceptions are

Gopalakrishnan et al. (2015) and Zhan and Ward (2015) who study, respectively, optimal rout-

ing and staffing decisions, and optimal compensation schemes in many-server queueing models

where servers strategically choose their service rates. Gopalakrishnan et al. (2015) find that an
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asymptotically optimal staffing policy staffs strictly more than the common square-root staffing

rule (corresponding to the critically-loaded regime, at fluid scale). The analysis in Zhan and Ward

(2015) is in the same spirit as ours, but their problem setting is different. They use a fluid approx-

imation to find staffing and employee compensation policies which minimize systems costs, and

find that different operating regimes, including the underloaded, critically-loaded, or overloaded

regimes, may emerge depending on specific modelling assumptions.

Our work is also related to Gurvich et al. (2015) who study optimal staffing and compensation

schemes with self-scheduling agents and no customer abandonment. However, they do not investi-

gate the asymptotic accuracy of the fluid model. Moreover, agents in their setting are independent

contractors who need not make a choice between several available work shifts. In contrast, agents

in our setting are employees of the firm who must make such a choice. In their setting, unlike in

ours, Gurvich et al. find that self-scheduling always leads to reducing the system’s staffing level.

3. Modelling Framework

In this section, we describe our modelling framework. In §3.1, we present our agent valuation

model. In §3.2, we describe our queueing framework. Finally, in §3.3, we formulate the optimization

problem faced by the system manager.

3.1. Agent Valuation Model

We assume that agents are risk-neutral, independent, and heterogeneous. The agent pool size is

n, and there are k working periods. We assume that there is a fixed staffing cost, cj, per server

in period j, 1≤ j ≤ k. Let Xj quantify the (random) personal utility that an agent obtains from

working in period j, e.g., due to personal preferences or availability for that specific period. An

agent i, 1≤ i≤ n, draws a random variate, xi,j from the distribution of Xj; the distribution itself

is assumed to be common across all agents. Different agents make such draws independently, and

the value of xi,j is private information to agent i. We assume that {Xj,1≤ j ≤ k} are independent.

However, the distribution of Xj, as well as all other model parameters, are assumed to be common

knowledge to the agents and the system manager. Based on the values of his/her personal utility

xi,j and the compensation cj, agent i decides whether or not to work in period j.
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Let rj denote the probability that a randomly selected agent, in the pool of size n, will work in

period j. Letting Vj denote the total valuation of an agent for period j, we have that:

Vj = cj +Xj. (1)

With self-scheduling agents, an agent must select to work in exactly one of the k periods. In this

case, an agent selects to work in period j0, if, and only if, Xj0 + cj0 ≥Xj + cj for all j, i.e.,

rj0 = P
(
Xj0 + cj0 = max

1≤j≤k
{Xj + cj} and cj0 +Xj0 ≥ 0

)
, (2)

where we require the nonnegativity of Vj0 = cj0 + Xj0 because agents would otherwise not be

interested in working for the system manager. Therefore, for each period j, the number of available

servers, Nn
j , has a binomial distribution with parameters n and rj. Also, the joint distribution of

{Nn
j ,1≤ j ≤ k} is multinomial with parameter n and success probabilities {rj,1≤ j ≤ k}.

We may also consider a different application context. For example, with agent absenteeism: An

agent may select to show up for work in a period if, and only if, his valuation for that period is

nonnegative, i.e., rj0 = P(cj0 +Xj0 ≥ 0), and s/he may elect to work in multiple periods. Then,

{Nn
j ,1≤ j ≤ k} are independent but the marginal distribution of Nn

j remains binomial.

3.2. Queueing Model

We consider single-class M/M/N+GI queueing models in steady state (we consider the G/G/N+

GI model in §6). We assume that customers arrive to the system according to independent Poisson

processes with rates λj, 1≤ j ≤ k. We assume that there is no service overlap between the different

periods, i.e., customers who arrive during a period must be served by agents who are assigned

to that period. The number of servers in period j, Nn
j , has a (marginal) binomial distribution

Nn
j ∼ Bin(n, rj). Conditional on the number of servers in a given period, queueing dynamics in

different periods are independent.

We let service times be independent and identically distributed (i.i.d.) exponential random vari-

ables with rate µ. We assume that µ= 1; we do so without loss of generality, because we are free

to choose the time units in our system, and this assumption amounts to measuring time in units
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of mean service time. Each arriving customer will abandon if he is unable to start service before

a random amount of time, which we refer to as his patience time. Patience times are i.i.d. across

customers, and have a cumulative distribution function (cdf) F , complementary cdf (ccdf) F c,

density function f , hazard-rate function fa, and mean 1/θ for some θ > 0. Irrespective of the value

of Nn
j , customer abandonment makes the system stable; see Baccelli et al. (1984). The arrival,

service, and abandonment processes are all mutually independent, also independent of Nn
j . There

is unlimited waiting space, and we use the first-come-first-served service discipline.

3.3. System Manager’s Problem

As in Bassamboo and Randhawa (2010), we consider two quality-of-service costs, indexed by the

period j: (i) A delay cost, hj, which is incurred per customer for each unit of time that this customer

spends waiting to be served, and (ii) an abandonment penalty cost, pj, incurred per customer who

abandons before being served. For period j, let QNnj
denote the steady-state queue length and αNnj

denote the net customer abandonment rate. The system manager’s staffing problem is:

(3)min
n ∈N

Π(n) ≡
∑

1≤j≤k

(
cj · E[Nn

j ] + pj · E[αNnj ] + hj · E[QNnj
]
)
,

where N denotes the set of natural integers. Since the staffing problem in (3) is not amenable

to exact analysis, we consider a steady-state fluid approximation of the system instead (Whitt

2006a). We define ρj ≡ λj/E[Nn
j ] = λj/nrj. We let q̄ρj and ᾱρj denote the fluid-scaled limits for the

queue-length and net abandonment rates in the corresponding M/M/E[Nn
j ]+GI model with traffic

intensity ρj and a deterministic number of servers E[Nn
j ]; this is a slight abuse of notation since

E[Nn
j ] = nrj may not be integer valued. In other words, ᾱρj = (ρj − 1)+ and q̄ρj = ρj

∫ wj
0
F c(x)dx,

where the fluid waiting time wj is such that ρjF (wj) = ᾱρj (Whitt 2006a). The fluid approximation

to problem (3) is therefore given by:

(4)min
n ∈N

Πf (n) ≡
∑

1≤j≤k

(
cj · E[Nn

j ] + pj · E[Nn
j ] · ᾱρj + hj · E[Nn

j ] · q̄ρj
)
.

Next, we establish the asymptotic accuracy of fluid approximations and staffing prescriptions.
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4. Asymptotic Accuracy of Fluid Approximations and Prescriptions

Conditional on the number of servers in the period, queueing dynamics in different periods are

assumed to be independent. Moreover, the number of servers in each period has a marginal binomial

distribution. Thus, to establish the desired asymptotic accuracy, it suffices to focus on a single

period and a system with a binomial number of servers. The proof for multiple periods can then

be obtained by a simple argument, exploiting a similar conditioning argument as the one that we

use in what follows, along with the conditional independence across periods. In other words, due

to this conditional independence, the joint distribution of the numbers of servers across periods

does not matter, so long as we can show fluid asymptotic accuracy in each period. In this section,

for clarity of exposition, we consider a single-period setting (thus, we drop dependence on j).

4.1. Asymptotic Framework

We consider a sequence of queueing models indexed by the arrival rate λ, and study system perfor-

mance as λ increases without bound. The number of servers in the λth system is Nλ ∼Bin(nλ, r).

We assume that ρ≡ λ/E[Nλ] = λ/rnλ remains fixed as λ increases. Let QNλ denote the steady-state

queue length and αNλ the net customer abandonment rate in the M/M/Nλ +GI queue. We refer

to the cases with ρ > 1, ρ < 1, and ρ = 1 as the overloaded, underloaded, and critically loaded

regimes, respectively. Note that since Nλ is random, an M/M/Nλ +GI system with e.g., ρ > 1

may or may not be overloaded, i.e., having λ>Nλ. We summarize our main results in Theorem 1.

In §5, we prove these results for the overloaded regime; the remaining proofs are in the appendix.

Theorem 1. Consider an M/M/Nλ + GI queueing model with Nλ ∼ Bin(nλ, r) and let ρ ≡

λ/rnλ.

(a) If ρ> 1 (overloaded regime), then there exists a finite constant K > 0 such that

limsup
λ→∞

∣∣E[QNλ ]− rnλq̄ρ
∣∣≤K and lim

λ→∞

∣∣E[αNλ ]− rnλᾱρ
∣∣→ 0.

(b) If ρ= 1 (critically-loaded regime), then there exist finite constants K ′1,K
′
2 > 0 such that

limsup
λ→∞

E[QNλ ]≤K ′1
√
λ and limsup

λ→∞
E[αNλ ]≤K ′2

√
λ.
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(c) If ρ< 1 (underloaded regime), then

lim
λ→∞

E[QNλ ]→ 0 and lim
λ→∞

E[αNλ ]→ 0.

4.2. Interpretation of Theorem 1

Intuitively, the results of Theorem 1 hold because the binomial distribution concentrates “tightly”

around its expected value, in a sense that will be made formal in §5. This is why fluid approxima-

tions which are based on approximating the random number of servers by its expected value are

useful. To interpret the results of Theorem 1, we need the following definitions.

Definition 1. Let f and g be two functions defined on some subset of R. Then, as n→∞,

(a) f(n) =O(g(n)) if there exists M > 0 and C > 0 such that |f(n)|≤M |g(n)| for n≥C;

(b) f(n) = o(g(n)) if for all ε > 0, there exists N such that |f(n)|≤ ε|g(n)| for all n≥N .

Theorem 1 shows that, in the overloaded system, the fluid approximation for the expected queue

length is asymptotically accurate up to O(1), and the fluid approximation for the net abandonment

rate is asymptotically accurate up to o(1), i.e., the corresponding error is asymptotically bounded

in the former case, and it decreases with the arrival rate in the latter case. In other words, fluid

approximations are “extremely accurate” in the overloaded regime. In the critically-loaded system,

those fluid-approximation errors are O(
√
λ), i.e., they grow in the square-root of the size of the

system. In the underloaded regime, fluid approximations are o(1)-accurate since errors for both

performance measures decrease with the arrival rate. We will show in §4.3 that fluid-based staffing

prescriptions are asymptotically accurate in all those cases.

4.3. Staffing Prescriptions

We are now ready to establish the asymptotic accuracy of fluid-based staffing prescriptions, by

exploiting the results of Theorem 1. We do so in Theorem 2, whose proof proceeds along similar

lines as Theorem 3 in Bassamboo and Randhawa (2010).

Theorem 2. The fluid-based prescription, n∗λ, i.e., the optimal solution to problem (4), is

asymptotically optimal in the overloaded, critically-loaded and underloaded regimes in the sense

that

lim
λ→∞

Π∗λ
Πλ(n∗λ)

= 1,
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where Π∗λ is the optimal objective value for (3) and Πλ(n∗λ) is the value of its objective evaluated at

n∗λ. If, in addition, n∗λ is such that the system is overloaded, then there exists K ′′ > 0 such that

limsup
λ→∞

|Π∗λ−Πλ(n∗λ)|≤K ′′,

i.e., the fluid staffing prescription is asymptotically O(1)-accurate in the overloaded regime.

Next, we present simulation results which substantiate Theorem 1. In §7, we present additional

results which substantiate Theorem 2 in the case of self-scheduling servers.

4.4. A Numerical Study

In Table 1, we present simulation estimates quantifying the accuracy of fluid performance measures

in the overloaded regime, in the M/M/N +GI model with N ∼Bin(n,0.4) and alternative values

of n. Corresponding results for the critically-loaded and underloaded regimes are given in Table 3

of the appendix. We consider three different abandonment-time distributions: (i) exponential with

mean 1, (ii) Pareto with shape parameter 2 and mean 1, i.e., F c(x) = 1/(1 +x)2, and (3) uniform

over [0.5, 1.5]. Our simulation estimates are based each on 400 independent replications of length

50,000 arrival events per replication, with an initial transient of length 2,000 arrival events removed

from each replication (to ensure steady-state conditions).

We let n increase while holding ρ= λ/nr = 1.4. In addition to point estimates, we report half-

widths of 95% confidence intervals. The results of Table 1 clearly illustrate the O(1)-accuracy

of fluid queue length, since the errors in the approximations for the expected steady-state queue

length do not increase in the magnitude of the arrival rate. For the net abandonment rate, the

reported errors converge to 0, as desired, so that we have o(1)-accuracy in that case.

5. Proof of Theorem 1: The Overloaded Regime
5.1. Sketch of the Proof

In order to derive our desired results, we must condition (and uncondition) on the possible real-

izations of the random variable Nλ. We classify those realizations as being either “concentrated”

around the mean, nλr, or “far away” from this mean. Conditional on each set of realizations, we

quantify the resulting error in the fluid approximation; see Lemmas 1 and 2.
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Exponential Abandonment

n E[QN ] E[αN ] rnq̄ rnᾱ |E[QN ]− rnq̄| |E[αN ]− rnᾱ|

30 5.12 ±0.21 5.14 ±0.21 4.8 4.8 0.32 0.34

50 8.13± 0.31 8.15 ± 0.31 8 8 0.13 0.15

70 11.2 ± 0.38 11.2 ± 0.38 11.2 11.2 0.038 0.026

100 16.0 ± 0.46 16.0 ± 0.46 16 16 0.014 0.00028

Pareto Abandonment

n E[QN ] E[αN ] rnq̄ rnᾱ |E[QN ]− rnq̄| |E[αN ]− rnᾱ|

30 8.48 ±0.20 5.00 ±0.23 9.70 4.8 1.2 0.20

50 15.0 ± 0.25 8.12 ±0.33 16.2 8 1.2 0.12

70 21.7 ±0.25 11.3 ±0.36 22.6 11.2 0.90 0.097

100 31.7 ±0.27 16.0 ±0.47 32.3 16 0.68 0.013

Uniform Abandonment

n E[QN ] E[αN ] rnq̄ rnᾱ |E[QN ]− rnq̄| |E[αN ]− rnᾱ|

30 11.0 ±0.43 4.92 ±0.37 12.5 4.8 1.5 0.12

50 19.4 ±0.57 8.05 ±0.54 20.9 8 1.5 0.050

70 27.9± 0.60 11.1 ±0.63 29.2 11.2 1.3 0.063

100 40.7 ±0.64 16.0 ±0.76 41.7 16 1.0 0.025

Table 1 Asymptotic accuracy of fluid performance measures in the overloaded regime in the M/M/N +GI

model with N ∼Bin(n,0.4) and ρ= 1.4.

We exploit a concentration inequality for the binomial distribution, which shows that the number

of servers asymptotically concentrates tightly around its expected value. Recall that we consider

that ρ > 1, i.e., λ/nλr > 1 and the system is overloaded in an expected sense. Thus, the expected

system’s performance is asymptotically well approximated by measures which are based on the

overloaded fluid model with nλr servers. We then exploit existing results quantifying the “strong”

asymptotic accuracy of fluid approximations with a deterministic number of servers in the over-
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loaded regime (Bassamboo and Randhawa 2010). Combining the above steps establishes the strong

asymptotic accuracy of fluid approximations in the overloaded regime with a binomial number of

servers. Our proofs for the critically-loaded and underloaded cases proceed similarly.

5.2. Proof Details

5.2.1. O(1)-Accuracy for the Fluid Queue Length. We begin by establishing the asymp-

totic O(1)-accuracy for the expected queue length. Let 0< ε< r and define k1 ≡ r−ε and k2 ≡ r+ε.

Assume that ε is small enough so that ρr/(r+ ε)> 1. Denote E[QNλ |Nλ = s]≡ E[Qs] where Qs is

the steady-state queue length in the corresponding M/M/s+GI queue with the same arrival rate.

Conditioning and unconditioning on Nλ. Conditioning on Nλ, we can write:

|E[QNλ ]− rnλq̄ρ|=

∣∣∣∣∣∑
s≥0

E[Qs]P(Nλ = s)− rnλq̄ρ

∣∣∣∣∣
=

∣∣∣∣∣∑
s≥0

(E[Qs]− sq̄ρ)P(Nλ = s)

∣∣∣∣∣ since E[Nλ] = rnλ =
∑
s≥0

sP(Nλ = s),

=

∣∣∣∣∣∣
∑

s<k1nλ or s>k2nλ

(E[Qs]− sq̄ρ)P(Nλ = s) +
∑

k1nλ≤s≤k2nλ

(E[Qs]− sq̄ρ)P(Nλ = s)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑

s<k1nλ or s>k2nλ

(E[Qs]− sq̄ρ)P(Nλ = s)

∣∣∣∣∣∣+
∣∣∣∣∣∣

∑
k1nλ≤s≤k2nλ

(E[Qs]− sq̄ρ)P(Nλ = s)

∣∣∣∣∣∣ .
We now turn to establishing asymptotic bounds for Aλ and Bλ, defined as follows:

Aλ ≡

∣∣∣∣∣∣
∑

s<k1nλ or s>k2nλ

(E[Qs]− sq̄ρ)P(Nλ = s)

∣∣∣∣∣∣ and Bλ ≡

∣∣∣∣∣∣
∑

k1nλ≤s≤k2nλ

(E[Qs]− sq̄ρ)P(Nλ = s)

∣∣∣∣∣∣ .
Asymptotic bound for Nλ far from nλr. We begin by showing that Aλ is asymptotically negligible.

Lemma 1. limλ→∞Aλ = 0.

Proof. We can write,

Aλ =

∣∣∣∣∣∣
∑

s>k2nλ or s<k1nλ

E[Qs]P(Nλ = s)−
∑

s>k2nλ or s<k1nλ

sq̄ρP(Nλ = s)

∣∣∣∣∣∣ ,
≤E[Q0]

∑
s>k2nλ or s<k1nλ

P(Nλ = s) +
∑

s>k2nλ or s<k1nλ

sq̄ρP(Nλ = s).

Also, define A
(1)
λ ≡ E[Q0]

∑
s>k2nλ or s<k1nλ

P(Nλ = s) and A
(2)
λ ≡

∑
s>k2nλ or s<k1nλ

sq̄ρP(Nλ = s).

Note that Q0 has the same distribution as the steady-state number in the system in an M/GI/∞
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model with Poisson arrivals at rate λ= rnλρ and i.i.d. generally distributed service times having

the same distribution, F , as the abandonment times in our original model. Therefore, exploit-

ing standard results for the infinite-server queue, Q0 has a Poisson distribution with mean

λ/θ = rnλρ/θ, i.e., E[Q0] = O(λ). Applying Hoeffding’s inequality to the binomial distribution:

P (k1nλ ≤Nλ ≤ k2nλ)≥ 1− 2e−2ε
2nλ ; equivalently, P (k1nλ >Nλ or Nλ >k2nλ)≤ 2e−2ε

2nλ . Thus,

A
(1)
λ =E[Q0]

∑
s>k2nλ or s<k1nλ

P(Nλ = s) =E[Q0] ·P (k1nλ >Nλ or Nλ >k2nλ)→ 0 as λ→∞.

We now turn to showing that A
(2)
λ is asymptotically negligible as well. Note that:

A
(2)
λ = q̄ρ

∑
s>k2nλ or s<k1nλ

sP(Nλ = s) = q̄ρE[Nλ1{Nλ >k2nλ or Nλ <k1nλ}],

where 1{·} denotes an indicator random variable. By the Cauchy-Schwarz inequality:

E[Nλ1{Nλ >k2nλ or Nλ <k1nλ}]≤
√

E[N 2
λ ]P(Nλ >k2nλ or Nλ <k1nλ)

=
√

(nλr(1− r) +n2
λr

2)P(Nλ >k2nλ or Nλ <k1nλ)→ 0 as λ→∞.

Therefore, A
(2)
λ → 0 as λ→∞. Combining the above, we obtain that Aλ→ 0 as well.

Asymptotic bound for Nλ close to nλr. We now characterize Bλ for large λ.

Lemma 2. There exists a finite constant C > 0 such that limsupλ→∞Bλ ≤C.

Proof. We begin by writing Bλ as follows,

Bλ ≤
∑

k1nλ≤s≤k2nλ

|E[Qs]− sq̄ρs |P(Nλ = s) +

∣∣∣∣∣∣
∑

k1nλ≤s≤k2nλ

s(q̄ρs − q̄ρ)P(Nλ = s)

∣∣∣∣∣∣ , (5)

where ρs ≡ nλrρ/s and q̄ρs is the fluid limit for the queue length in the M/M/s+GI queue with

traffic intensity ρs (the arrival rate is λ= rnλρ and the number of servers is s). Let,

B
(1)
λ ≡

∑
k1nλ≤s≤k2nλ

|E[Qs]− sq̄ρs |P(Nλ = s) and B
(2)
λ ≡

∣∣∣∣∣∣
∑

k1nλ≤s≤k2nλ

s(q̄ρs − q̄ρ)P(Nλ = s)

∣∣∣∣∣∣ .
First, we consider B

(1)
λ and show that it is asymptotically bounded. Fix nλ and note that to each

k1nλ ≤ s≤ k2nλ corresponds a traffic intensity ρs in the M/M/s+GI system, where ρs = nλrρ/s
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and 1<ρr/(r+ ε)≤ ρs ≤ ρr/(r− ε). By Theorem 5 of Bassamboo and Randhawa (2010), assuming

that f is strictly positive and continuously differentiable,

limsup
λ→∞

|E[Qs]− sq̄ρs |≤
√
f(w̄ρs)

(
3|f ′(w̄ρs)|
ρsf2(w̄ρs)

+ 1/2

)
, (6)

where w̄ρs is the fluid limit for the steady-state waiting time in the overloaded M/M/s+GI queue

with traffic intensity ρs. Note that for ρr/(r+ ε)≤ ρs ≤ ρr/(r− ε), we have that w̄ρr/(r+ε) ≤ w̄ρs ≤

w̄ρr/(r−ε). By the continuity of the bounding function in (6) and the boundedness theorem, we

conclude that there exists a finite constant C1 > 0 such that

sup
k1n≤s≤k2n

√
f(w̄ρs)

3|f ′(w̄ρs)|
ρ′f2(w̄ρs)

+ 1/2≤C1. (7)

Thus, lim supλ→∞B
(1)
λ ≤C1. There remains to study the asymptotic behaviour of B

(2)
λ . Note that

q̄ρs = ρs
∫ (F c)−1(1/ρs)

0
F c(u)du, e.g., by equations (3.6) and (3.7) in Whitt (2006a). Consider,∣∣∣∣∣∑

s≥0

s

(
ρs

∫ (F c)−1(1/ρs)

0

F c(x)dx− ρ
∫ (F c)−1(1/ρ)

0

F c(u)du

)
P(Nλ = s)

∣∣∣∣∣
=

∣∣∣∣∣∑
s≥0

(
nλrρ

∫ (F c)−1(s/nλrρ)

0

F c(u)du− sρ
∫ (F c)−1(1/ρ)

0

F c(u)du

)
P(Nλ = s)

∣∣∣∣∣ ,
=

∣∣∣∣∣E
[(

nλrρ

∫ (F c)−1(Nλ/nλrρ)

0

F c(u)du−Nλρ

∫ (F c)−1(1/ρ)

0

F c(u)du

)]∣∣∣∣∣ ,
=

∣∣∣∣∣nλρrE
[(∫ (F c)−1(Nλ/nλrρ)

0

F c(u)du−
∫ (F c)−1(1/ρ)

0

F c(u)du

)]∣∣∣∣∣ ,
=

∣∣∣∣∣nλρrE
[(∫ (F c)−1(Nλ/nλrρ)

(F c)−1(1/ρ)

F c(u)du

)]∣∣∣∣∣ .
We now show that there must exist a finite constant C2 > 0 such that∣∣∣nλρrE[(∫ (F c)−1(Nλ/nλrρ)

(F c)−1(1/ρ)
F c(u)du

)]∣∣∣≤C2 for λ large enough. To this aim, define the function

gλ(x) = nλρr

∫ (F c)−1(x/nλrρ)

(F c)−1(1/ρ)

F c(u)du for x≥ 0.

For a given λ, we use a Taylor-series expansion of E[gλ(Nλ)] around E[Nλ] = nλr (we can do this

since gλ is sufficiently differentiable and the moments of Nλ are finite):

|E[gλ(Nλ)]|≈
∣∣∣∣E[gλ(nλr) + g′λ(nλr) (Nλ−nλr) +

1

2
g′′λ(nλr)(Nλ− rnλ)2

]∣∣∣∣ ,
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where “≈” denotes equality up to an O(1/λ) term. Indeed, by computing the centralized moments

of Nλ and higher-order derivatives of gλ, it can be shown that the remainder term in the Taylor

series is O(1/λ). Also, gλ(nλr) = 0 and

g′λ(nλr) =− 1/ρ

f(F c)−1(1/ρ)
and g

′′
λ(nλr) =− 1

rnλρ

h1(ρ) + (1/ρ)h2(ρ)/h1(ρ)

h2
1(ρ)

,

where h1(ρ) = f(F c−1
(1/ρ)) and h2(ρ) = f ′(F c−1

(1/ρ)). Thus, there exists C2 > 0 such that:

|E[gλ(Nλ)]|≈ |1
2
g′′λ(nλr)nλr(1− r)|≤C2 for λ large enough.

We now turn to the asymptotic behaviour of B
(2)
λ . Note that:

B
(2)
λ = |E[gλ(Nλ)1{Nλ ∈ [k1nλ, k2nλ]}]| , and

|E[gλ(Nλ)]|= |E[gλ(Nλ)1{Nλ ∈ [k1nλ, k2nλ]}] +E[gλ(Nλ)1{Nλ /∈ [k1nλ, k2nλ]}]| .

Bounding the second term in the last equality,

E[gλ(Nλ)1{Nλ /∈ [k1nλ, k2nλ]}]≤ |E[gλ(Nλ)1{Nλ /∈ [k1nλ, k2nλ]}]|

≤
√

E[g2λ(Nλ)]P(Nλ /∈ [k1nλ, k2nλ]) (Cauchy Schwarz inequality)

→ 0,

since P(Nλ /∈ [k1nλ, k2nλ]) vanishes exponentially fast as λ → ∞, and E[g2λ(Nλ)] = O(λ2)

since
∫ (F c)−1(Nλ/nλrρ)

(F c)−1(1/ρ)
F c(u)du ≤ 1/θ. Thus, lim supλ→∞B

(2)
λ = limsupλ→∞|E[gλ(Nλ)1{Nλ ∈

[k1nλ, k2nλ]}]|≤C2. Combining the above, there exists C > 0 such that limsupλ→∞Bλ ≤C.

O(1)-accuracy. Since both Aλ and Bλ are asymptotically bounded, there must exist K > 0 such

that, as desired:

limsup
λ→∞

∣∣E[QNλ ]− rnλq̄ρ
∣∣≤K.
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5.2.2. o(1)-Accuracy for the Fluid Net Abandonment Rate. The proof for the net

abandonment rate proceeds along similar lines, so we will be brief. Paralleling (6), and denoting

E[αNλ |Nλ = s] ≡ E[αs], we can exploit Theorem 5 in Bassamboo and Randhawa (2010) to show

that
∑

k1nλ≤s≤k2nλ
(E[αs]− sᾱρs)P(Nλ = s)→ 0 as λ→∞. Moreover, by equation (3.3) in Whitt

(2006a): ᾱρs = ρs− 1; thus, s(ᾱρs − ᾱρ) = ρ(nλr− s). We can then write:

∑
k1nλ≤s≤k2nλ

s(ᾱρs − ᾱρ)P(Nλ = s) = ρE[(nr−Nλ)1(k1nλ ≤Nλ ≤ k2nλ)],

and deduce that E[(nr−Nλ)1(k1nλ ≤Nλ ≤ k2nλ)]→ 0 since E[Nλ] = rnλ.

6. Application: Staffing with Self-Scheduling Servers

We now use fluid approximations to solve the staffing problem with self-scheduling agents. We

extend our modelling framework and consider the G/GI/N + GI queueing model instead, i.e.,

we consider generally-distributed i.i.d. service times and a general stationary arrival process. In

the appendix (Tables 4-5), we verify numerically that our asymptotic results continue to hold in

this more general setting. We assume that agents select to work in one of two periods (assuming

that they derive positive utility for that period). Since we have virtual call centers in mind, we

assume that there is a fixed base salary c= c1 = c2 per agent, e.g., this is consistent with the widely

used per-hour or per-minute fixed compensation schemes. Since we consider that there is a single

customer class, irrespective of the period, we let p = p1 = p2 and h = h1 = h2; allowing unequal

costs is a simple extension.

We begin by solving the problem without self-scheduling, and then describe how self-scheduling

affects the optimal staffing policy. We are particularly interested in characterizing the roles of the

abandonment-time distribution and strategic agent behavior. Without self-scheduling, the system

manager can independently select the optimal staffing levels, n∗j , in periods j = 1,2. However, with

self-scheduling, the system manager can only choose the total staffing level, n∗, and allow agents

in the pool of size n∗ to self schedule.
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6.1. No Self-Scheduling

The density of the fluid that has been waiting for exactly u time units, in period j, is equal to

λjF
c(u). Therefore, the corresponding (unscaled) queue length is given by qj =

∫ wj
0
λjF

c(u)du,

where wj denotes the waiting time. The net abandonment rate (unscaled) in period j is equal to

λjF (wj). In the absence of self-scheduling, we must have that n∗j = λjF
c(w∗j )≤ λj where w∗j is the

optimal waiting time in period j; indeed, it is then suboptimal to staff more than λj agents in

period j. The fluid approximation to the system manager’s problem for period j is:

min
wj≥0

λj

(
(c− p)F c(wj) +h

∫ wj

0

F c(u)du

)
. (8)

Hereafter, we make the following simplifying assumption:

Assumption 1. The density function, f , is differentiable and strictly positive on [0,∞). Addi-

tionally, the hazard-rate function, fa, is monotonic.

Bassamboo and Randhawa (2010) derive optimal fluid prescriptions when servers do not self-

schedule; the following is a restatement of Propositions 4 and 5 of that paper.

Proposition 1. Let j ∈ {1,2}. Under Assumption 1, for the benchmark problem in (8):

(i) if fa is monotonically decreasing and there exists w∗j > 0 such that c= p+ h/fa(w
∗
j ), then

it is asymptotically optimal to operate period j overloaded with n∗t = λtF
c(w∗j );

(ii) if fa is monotonically increasing and c < p+ h/θ, or if c < p, then it is asymptotically

optimal to operate period j critically loaded, i.e., n∗j = λj.

Proposition 1 shows that optimal staffing decisions generally depend on both cost parameters and

the abandonment-time distribution. We also assume the following:

Assumption 2. The staffing cost is sufficiently inexpensive, i.e., c <min{h/fa(0) +p,h/θ+p}.

Under Assumptions 1 and 2, it is easy to establish the following result for the asymptotically

optimal solution to problem (8). Unless otherwise specified, Assumptions 1 and 2 are assumed to

hold hereafter; in §7, we consider systems where Assumption 2 fails to hold.

Proposition 2. Under Assumptions 1 and 2, in a system with no self-scheduling servers, it is

asymptotically optimal to operate each period in the critically-loaded regime.
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6.2. Self-Scheduling Servers

We now investigate the effect of self-scheduling on cost-minimizing staffing decisions. Let r be the

probability of selecting period 1, e.g., based on (2). With a total staffing level n, let n1 = nr and

n2 = n(1− r) denote the resulting staffing levels in periods 1 and 2. The net abandonment rate is

given by λjF (wj). We define mj ≡ λjF c(wj). Note that mj may be different from the number of

servers in period j, nj, since it may now be optimal to overstaff the system, unlike in §6.1. It is

convenient to express the system manager’s staffing problem in terms of mj and n, as follows:

min cn+
∑
j=1,2

(
p(λj −mj) +h

∫ F c−1(mj/λj)

0

λjF
c(u)du

)
(9)

subject to

m1 = min{λ1, nr}; m2 = min{λ2, n(1− r)}; m1,m2, n≥ 0.

Proposition 2 shows that, if servers do not self-schedule, then n∗j = λ∗j . In this case, the propor-

tion of agents who are assigned to period 1 is, at optimum, defined to be n∗1/(n
∗
1 +n∗2)≡ r∗. Thus,

self-scheduling has no effect on the operational management of the system if, and only if, r = r∗.

In this case, both periods are critically loaded at optimum. We are interested in investigating

optimal staffing decisions for each period when r 6= r∗. Since fully characterising the solution of

problem (9) is algebraically complicated, we focus on deriving sufficient conditions for the asymp-

totic optimality of different regimes instead. Motivated by the importance of the shape of the

abandonment-time distribution in the results of Bassamboo and Randhawa (2010), we begin by

considering abandonment-time distributions with a monotonically increasing hazard rate.

6.3. Monotonically Increasing Hazard Rate

Let r < r∗, i.e., agents disproportionately select period 2 over period 1. In the proof of the following

proposition, we show that c/(p+h/fa(0))< c/(p+h/θ), i.e., the intervals on r are non-overlapping.

Proposition 3. Under Assumptions 1 and 2, if fa is monotonically increasing and r < r∗,

(i) if r <min{c/(p+h/fa(0)), r∗}, then it is asymptotically optimal to operate period 1 over-

loaded, and period 2 critically-loaded;
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(ii) if c/(p+ h/θ)< r < r∗, then it is asymptotically optimal to operate period 1 critically-

loaded, and period 2 underloaded.

It is optimal for the system manager to overstaff his system, i.e., let n∗ > λ1 + λ2, if r is

smaller than but relatively close to r∗, as in item (ii) of Proposition 3. In this case, the system

manager ensures that period 1, which is the least preferred period, is asymptotically critically

loaded. Otherwise, if r is much smaller than r∗, then it is optimal for the system manager to

understaff his system, i.e., let n∗ < λ1 + λ2; this corresponds to item (i) in Proposition 3. In this

case, period 2, which is the most preferred period, is asymptotically critically loaded. The optimal

solution to problem (9) for r > r∗ is summarized in the following proposition. Since those results

are in the same vein as above (reversing the roles of the two periods), we omit discussing them.

Proposition 4. Under Assumptions 1 and 2, if fa is monotonically increasing and r > r∗,

(i) if r∗ < r < 1− c/(p+h/θ), then it is asymptotically optimal to operate period 2 critically-

loaded and period 1 underloaded;

(ii) if max{1− c/(p+ h/fa(0)), r∗}< r, then it is asymptotically optimal to operate period 2

overloaded, and period 1 critically loaded.

6.4. Monotonically Decreasing Hazard Rate

For a monotonically decreasing hazard rate, we make the additional simplifying assumption.

Assumption 3. The hazard-rate function, fa, is such that limx→∞ fa(x) = 0.

For example, Assumption 3 is satisfied for heavy-tailed distributions, such as the Pareto or log-

normal distributions. We summarize our results in Proposition 5. Interestingly, with an decreasing

hazard rate, it may be optimal to operate one period overloaded, while the other period is under-

loaded (we show this in the proofs of Proposition 5). That is never optimal with a monotonically

increasing hazard rate function, or with the exponential distribution (constant hazard rate). In the

proof of the following proposition, we show that it is possible to choose r0 sufficiently small so that

r0 < c/(h/fa(0) + p), i.e., the intervals in items (i) and (ii) are non-overlapping.
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Proposition 5. Under Assumptions 1, 2, and 3, a monotonically decreasing fa, and r < r∗,

(i) there exists r0 < r∗ such that if r < r0, then it is asymptotically optimal to operate period

1 overloaded and period 2 critically-loaded;

(ii) if c/(p+h/fa(0))< r < r∗, then it is asymptotically optimal to operate period 1 critically-

loaded and period 2 underloaded,

(iii) if r∗ < r < 1− c/(h/fa(0) + p), it is asymptotically optimal to operate period 2 critically

loaded and period 1 underloaded.

(iv) there exists r1 > r
∗ such that if r > r1, then it is asymptotically optimal to operate period

2 overloaded and period 1 critically-loaded.

6.5. Main Takeaways

6.5.1. Independence of the distribution of Xj. So far, we have expressed the optimal

staffing policy as a function of the value of r. However, it is also of interest to characterise how

the distributions of per-period utilities, Xj, affect the optimal staffing policy in the system. As

a consequence of (2), r = P(X1 −X2 ≥ 0 and X1 ≥−c). Assuming that Xj ≥−c (i.e., each agent

receives some nonnegative utility from working in either period), we can write r= P(X ≥ 0) where

X ≡ X1 −X2 is defined as the difference between the per-period utilities. This shows that the

optimal staffing policy depends on distribution of X only through its value at 0, and is independent

of the individual distributions of agent utilities for either period. In practical terms, this implies that

the optimal staffing policy for the system manager can be fully specified if the proportion of agents

who prefer one period over another is known, irrespective of other distributional assumptions. Such

a proportion can be estimated in practice, e.g., by surveying agents upon hire in the system. Next,

we describe the optimal staffing policy as a function of r.

6.5.2. Dependence on r. Our results for the optimal staffing policy with self-scheduling

servers show that, unlike Bassamboo and Randhawa (2010), the abandonment-time distribution

is no longer the sole determinant of the asymptotically optimal operational regime in the system.

Indeed, Propositions 3-5 show that, e.g., for small or large r, it is asymptotically optimal to overload

one of the periods and critically load the other, irrespective of the abandonment distribution.
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At first thought, we anticipate that the system manager must always compensate for self-

scheduling by increasing the total staffing level, leading to n∗ > λ1 + λ2. Our analysis shows that

this is true for values of r which are relatively close to r∗, i.e., where agent decisions are not too

“extreme”. In these cases, the system manager increases the staffing level to ensure that the least

preferred period is asymptotically critically loaded. Consequently, the more preferred period is over-

staffed, i.e., it is underloaded at optimum. Thus, self-scheduling leads to an overall increase in the

level of service provided by the system manager, and customers benefit from agent self-scheduling.

However, when agents exhibit disproportionately strong preferences for one of the two periods

(relative to r∗), ensuring that the least preferred period is asymptotically critically loaded would

entail staffing too many agents, which would cause the other period to be significantly overstaffed.

The system manager is then forced to understaff the least preferred period and operate it in the

overloaded regime instead. The strongly preferred period is operated in the critically-loaded regime,

and we have that n∗ < λ1 + λ2. Thus, self-scheduling leads to an overall decrease in the level of

service provided by the system manager, and customers are disadvantaged by agent self-scheduling.

7. Numerical Study: Self-Scheduling Servers

In this section, we describe results from a numerical study substantiating and extending our results

from previous sections.

7.1. Asymptotic Accuracy (Theorem 2)

We begin by numerically exploring the asymptotic accuracy of fluid-based staffing prescriptions. To

illustrate, we consider exponentially-distributed customer abandonment (and exponential service

times). We let c = 0.3, p = 0.5, h = 0.5, and θ = 1. In Figure 1, we let λ1 = 50 and λ2 = 35, and

in Figure 2, we let λ1 = 200 and λ2 = 140. In each case, we plot the percent relative errors in the

system manager’s cost, i.e., 100 · |Π∗λ−Πλ(n∗λ)|/Π∗λ as a function of r. In the lower subplots of each

figure, we plot the corresponding fluid-based prescriptions. We present additional results, for the

Pareto and uniform distributions, in the appendix (Figures 7 and 8).

Because the two periods are operating in different regimes, it is not clear what would be the

resulting magnitude of error in the fluid approximation. Our numerical results show that fluid-based
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Figure 1 Exponential abandonment in small systems

(λ1 = 50, λ2 = 35).
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Figure 2 Exponential abandonment in large systems

(λ1 = 200, λ2 = 140).

staffing prescriptions are remarkably accurate, as expected, with percent relative errors consistently

falling below 6% in both figures. This is particularly important for the case in Figure 1, because

it substantiates the usefulness of fluid approximations even in systems which are not too large.

The “peaks” in the upper subplots in Figures 1 and 2 correspond to values of r at which the fluid-

based optimal operational regime switches, e.g., at r = 0.3, it switches from overloading period 1

and critically loading period 2, to critically loading period 1 and underloading period 2. At such

boundary points, the objective function in the fluid model is “flat”, so that the resulting errors

in fluid approximations are greater. Nevertheless, our results show that fluid-based prescriptions

remain reliable, even in those extreme cases.

7.2. Fluid-Based Prescriptions (Propositions 3-5)

Increasing hazard rate. We now illustrate the results of Propositions 3 and 4 in Figure 3. There,

we consider an abandonment-time distribution which is uniformly distributed over (0,1). The

uniform distribution has an increasing hazard rate function. Throughout, we assume that service

times are exponentially distributed. We let c = 0.5, p = 0.7, h = 1, λ1 = 125, and λ2 = 75, and

present optimal staffing decisions in the system. With those parameter values, r∗ = 0.625. Also,
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c/(p+h/fa(0)) = 0.29 and c/(p+h/θ) = 0.41. As per Proposition 3, Figure 3 shows that: if r < 0.29,

then period 1 is overloaded and period 2 is critically loaded. Also, if 0.41< r < 0.625, then period

1 is critically loaded and period 2 is underloaded (this can be seen in the figure by comparing the

arrival rate value to the optimal staffing level prescribed).

Figure 3 also illustrates the optimal staffing policy for r values in the interval c/(p +

h/fa(0), c/(p+h/θ), which are not included in Proposition 3: In this case, period 1 must be over-

loaded as well, and period 2 remains critically loaded. We note in passing that 1− c/(p+ h/θ) =

0.58< r∗; thus, the interval in case (i) of Proposition 4 is empty. Finally, consistent with case (ii)

in Proposition 4, if r > 1− c/(p+h/fa(0)) = 0.71, then it is asymptotically optimal to let period 2

be overloaded and period 1 be critically loaded.

Decreasing hazard rate. We illustrate Proposition 5 in Figure 4 by numerically solving problem

(9) with a Pareto abandonment-time distribution with shape parameter equal to 2 and mean equal

to 1, i.e., with F c(x) = 1/(1 + x)2 and fa(x) = 2/(1 + x), for x≥ 0. The Pareto distribution has a

decreasing hazard rate. We use the same remaining parameter values as in Figure 3. Figure 4 shows

that, e.g., in Proposition 5, r0 is roughly equal to 0.3 and r1 is roughly equal to 0.6. Additionally,

Figure 4 shows that for values of r ranging between 0.3 and 0.375, it is asymptotically optimal

to operate period 1 overloaded concurrently with operating period 2 underloaded. Noting that

c/(p+ h/fa(0)) = 0.41, it is easy to check that the remaining results in Proposition 5 hold. Next,

we numerically investigate the optimal solution for problem (8) when Assumption 2 fails.

7.3. Optimality of the Overloaded Regime

When servers do not self-schedule, Proposition 2 shows that, under Assumptions 1 and 2, it is

asymptotically optimal to operate both periods in the critically-loaded regime. However, if Assump-

tion 2 does not hold, then this may no longer be the case. In particular, it may be asymptotically

optimal to operate both periods in the overloaded regime instead. In what follows, we consider an

example of such a system. Our objective is to investigate the optimal staffing policy in this case.

By Proposition 2, it is asymptotically optimal to operate a period overloaded if fa is monotoni-

cally decreasing and there exists w > 0 such that c= p+ h/fa(w). In Figures 5 and 6, we present
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ment with shape 2 and c= 2.

the optimal solution to problem (9) with a Pareto abandonment-time distribution with shape

parameter equal to 2 and mean equal to 1. We vary the value of c so as to violate the condition

c < p+h/fa(0), i.e., to violate Assumption 2; otherwise, we consider the same parameter values as

in Figure 4. If Assumption 2 does not hold, then it is easy to check that there must exist w> 0 such

that c= p+h/fa(w). In this case, if servers do not self schedule, then it is asymptotically optimal

to operate both periods in the overloaded regime. In Figure 5, we let c= 1.3 and in Figure 6, we
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let c= 2. It can be easily verified that c > p+ h/fa(0) for those two values of c. Figures 5 and 6

illustrate the optimal staffing policy. In particular, in Figure 5: irrespective of r, it is asymptotically

optimal to operate period 1 overloaded. Similarly, Figure 6 shows that, for c large enough, both

periods 1 and 2 are asymptotically overloaded at optimum, irrespective of r.

8. Conclusions

In this paper, we studied the staffing problem in large-scale service systems with a binomial number

of servers. The randomness in the number of servers follows from strategic agent behavior, which

has recently been gaining increased attention from practitioners and academics alike.

Our theoretical results support the usefulness of fluid approximations in analyzing systems where

servers are strategic. As an application, we studied a system manager’s problem of managing a

service system with self-scheduling agents. We showed that optimal staffing decisions lead to dif-

ferent asymptotically optimal operational regimes in the system, depending on both self-scheduling

behavior and the abandonment-time distribution. In particular, we demonstrated that the optimal

staffing policy is not straightforward, and that it may be optimal to either understaff or overstaff

the system. This, interestingly, shows that customers may either be disadvantaged (former case)

or benefit (latter case) from self-scheduling.

Queueing systems with a random number of servers have not been sufficiently studied so far,

and this paper constitutes one of recent efforts taken towards narrowing that gap in the literature.

Further exploration of the dynamics of such systems is of interest for future research. In this paper,

we focused solely on describing expected performance measures in the system. However, we did not

investigate the variability of the system’s performance measures about their expected values. We

also did not establish supporting many-server heavy-traffic limits for different stochastic processes

in the system, such as the queue length (corresponding to a functional law of large numbers). Such

an investigation would enable a deeper understanding of the system’s dynamics.

We also focused exclusively on the long-term decision of determining the total pool of agents to

hire. However, we did not consider medium or short-term controls that the system manager could
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use in order to incite the right number of agents, of the pool of size n (assumed fixed), to work in

different time periods of a day. For example, it would be interesting to investigate how different

compensation schemes may affect the numbers of agents available, and what would be the correct

incentive to use so as to incite enough agents to participate, at both diffusion and fluid scales. Of

particular interest are compensation schemes which are based on the workload, such as in surge

pricing, since these are already used in practice, e.g., at Uber or at Zappos (Fortune 2015).
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A. Proof of Theorem 1

A.1. The underloaded regime

Proof. Let 0< ε< r be small enough so that ρr/(r− ε)< 1, and recall that k1 ≡ r− ε and k2 ≡ r+ ε. Then,

conditioning on Nλ:

E[QNλ ] =
∑

k1nλ≤s≤k2nλ

E[Qs]P(Nλ = s) +
∑

k1nλ>s or s>k2nλ

E[Qs]P(Nλ = s),

≤
∑

k1n≤s≤k2n

E[Qs]P(Nλ = s) +E[Q0]
∑

k1nλ>s or s>k2nλ

P(Nλ = s).

As in the proof of Theorem 1, we can show that: E[Q0]
∑

k1n>s or s>k2n
P(N = s)→ 0 as λ→∞. Also,∑

k1n≤s≤k2n
E[Qs]P(Nλ = s) ≤ E[Q(k1nλ)]

∑
k1n≤s≤k2n

P(N = s). Since E[Q(k1nλ)] is the expected steady-

state queue length in an underloaded queue, it converges to 0 as λ→∞, e.g, see Theorem 5.1 in Zeltyn and

Mandelbaum (2005). The limit for the net abandonment follows similarly.

A.2. The Critically-Loaded Regime

Proof. We condition on Nλ:

E[QNλ ] =
∑

k1nλ≤s<nλr

E[Qs]P(Nλ = s) +
∑

nλr<s≤k2nλ

E[Qs]P(Nλ = s) +E[Qnλr]P(Nλ = nλr),

≤
∑

k1nλ≤s<nλr

|E[Qs]− sq̄ρs |P(Nλ = s) +
∑

k1nλ≤s<nλr

sq̄ρsP(Nλ = s) +
∑

nλr<s≤k2nλ

E[Qs]P(Nλ = s)

+E[Q(nλr)]P(Nλ = nλr), (10)

where ρs = λρnλ/s. Paralleling (6) and (7), we can show that there exists a finite constant C ′1 such that for

large λ:
∑

k1nλ≤s<nr
|E[Qs]− sq̄ρs |P(Nλ = s)≤C ′1 since ρs > 1 for all k1nλ ≤ s < nλr. Also,∑

k1nλ≤s<nλr

sq̄ρsP(Nλ = s) =
∑

k1nλ≤s<nλr

nλr

(∫ (Fc)−1(s/nλr)

0

F c(x)dx

)
P(Nλ = s) (11)

=E

[(
nλr

∫ (Fc)−1(N/nλr)

0

F c(x)dx

)
1(Nλ ∈ [k1nλ, nλr))

]
.

Using arguments as in Theorem 1, we can show that there exists a finite C ′2 > 0 such that

lim sup
λ→∞

E

[(
nλr

∫ (Fc)−1(N/nλr)

0

F c(x)dx

)
1(Nλ ∈ [k1nλ, nλr))

]
≤C ′2.

By Theorem 4.1 of Zeltyn and Mandelbaum (2005), there exists K ′ > 0 such that E[Qnλr]≤K ′
√
λ for large

enough λ. Given that
∑

nλr<s≤k2nλ
E[Qs]P(Nλ = s)→ 0 as λ→∞ (underloaded regime), we obtain that the

entire expression in (10) is O(
√
λ). The proof for the abandonment rate follows along similar lines, so we

omit the relevant details.
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B. Proof of Proposition 2

Based on item (ii) in Proposition 1: if fa is monotonically increasing and c < p+h/θ, then it is asymptotically

optimal to operate period j in the critically-loaded regime. There remains to establish that a similar con-

clusion holds if fa is monotonically decreasing, provided that Assumption 2 holds. The first-order derivative

of the objective in (8) is given by λjF
c(wj)(h− (c− p)fa(wj)). If c < h/fa(0) + p, and fa is monotonically

decreasing, then c < h/fa(wj) +p for any wj > 0. In other words, the objective is increasing in wj . Thus, the

optimal solution is to set w∗j = 0, i.e., let period j be critically loaded.

C. Proof of Propositions 3 and 4

In any optimal solution to problem (9), we must have that n= max{m1/r,m2/(1−r)}. This is so because the

objective function is increasing in n (assuming that c > 0) and so it is never optimal to set n strictly larger

than max{m1/r,m2/(1−r)}, which satisfies the remaining constraints. Our objective is to study the solution

space to problem (9). To this aim, we consider two cases: 1. n=m1/r at optimum, and 2. n=m2/(1− r) at

optimum. Recall that r∗ = λ1/(λ1 +λ2).

1. n=m1/r. Note that we must then have that n1 = nr=m1 ≤ λ1, which means that period 1 is either

critically loaded or overloaded. Also note that we must have that n(1− r)≥m2. We consider two

subcases: (a) m2 <n(1− r) at optimum and (b) m2 = n(1− r) at optimum.

(a) n=m1/r and m2 <n(1− r). If m2 < n(1− r), then m2 = λ2 < n(1− r). That is, period 2 must

be underloaded in this optimal solution. We then obtain that:

λ2

1− r
=

m2

1− r
< n=

m1

r
≤ λ1

r
.

This implies that we must have that r < r∗ in an optimal solution where n = m1/r and m2 <

n(1− r).

(b) n=m1/r and m2 = n(1− r). In this case, we must also consider two subcases: (i) m2 = n(1− r) =

λ2 and (ii) m2 = n(1− r)<λ2.

i. n=m1/r and m2 = n(1− r) = λ2. In this case, we must have that 2 is critically loaded.

Then,

λ1

r
≥ m1

r
= n=

λ2

1− r
.

This implies that r ≤ r∗, which must hold if n = m1/r and m2 = n(1 − r) = λ2 holds at

optimum.



Ibrahim: Staffing with a Random Number of Servers
34 Article submitted to ; manuscript no. (Please, provide the manuscript number!)

ii. n=m1/r and m2 = n(1− r)<λ2. Then, we must consider two new subcases: 1. nr=m1 = λ1

and m2 = n(1− r)<λ2 and 2. nr=m1 <λ1 and m2 = n(1− r)<λ2.

A. nr=m1 = λ1 and m2 = n(1− r)<λ2. This means that 1 is critically loaded and 2

is overloaded. In this case, n= λ1/r. This implies that

n(1− r) =
λ1(1− r)

r
< λ2.

This implies that r > r∗.

B. nr=m1 <λ1 and m2 = n(1− r)<λ2. This means that both 1 and 2 are overloaded.

We now show that under the assumption that c/(h/fa(0) + p)< 1 (Assumption 2), this

case cannot happen.

To prove that this case cannot happen, we consider solutions where both periods are

overloaded, and find the optimal waiting times w1 ≥ 0 and w2 ≥ 0 in this case. That

is, we assume that we have all servers busy in 1, i.e., m1 = nr = n1, and all servers

busy in 2, i.e., m2 = n(1− r) = n2, and show that, under our initial assumption that

c/(h/fa(0) + p) < 1, we cannot have that at optimum both w1 > 0 and w2 > 0. We

are interested in non-trivial solutions where w1 and w2 are not both infinite, which

corresponds to not staffing any servers. Since we seek solutions where all servers in both

periods are busy, then we must have that nr= n1 =m1 = λ1F
c(w1) and n(1−r) = n2 =

m2 = λ2F
c(w2). In other words, we need to solve the following problem:

(12)

min
w1 ≥0,w2≥0

c(λ1F
c(w1) + λ2F

c(w2))

+ p(λ1F (w1) + λ2F (w2))

+ h

(∫ w1

0

λ1F
c(u)du+

∫ w2

0

λ2F
c(u)du

)
subject to

(1− r)λ1F
c(w1) = rλ2F

c(w2).

The constraint in problem (12) is due to the fact that n= n1/r= λ1F
c(w1)/r= n2/(1−

r) = λ2F
c(w2)/(1 − r). In order to solve this problem, we use the method of direct

substitution. That is, we substitute w2 in problem (12) by the following expression:

w2 = (F c)
−1
(

1− r
r

λ1

λ2

F c(w1)

)
.
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The problem that we obtain (ignoring the constant pλ1 + pλ2 in the objective) is the

following:

(13)min
w1 ≥0

(c− p)λ1F
c(w1)

r
+ h

(∫ w1

0

λ1F
c(u)du

+

∫ (Fc)−1
(

1−r
r

λ1
λ2
Fc(w1)

)
0

λ2F
c(u)du

)
.

The derivative of the objective function is:

derivative = λ1hF
c(w1)

1− c− p
rh

fa(w1)

+

(
1− r
r

)2
λ1

λ2

f(w1)

f
(

(F c)
−1
(

(1−r)λ1

rλ2
F c(w1)

))
 .

(14)

If fa(·) is increasing, then the possible optimal solutions are at the boundary, i.e.,

either w1 = 0 or w1 = ∞ (which corresponds to no staffing at all). Recall that we

are investigating whether it is possible to have a non-trivial solution where w1 > 0 at

optimum. So, that is not possible if fa(·) is increasing.

Now, let us assume that fa(·) is decreasing. Then, a minimizing w1 must satisfy the

first-order condition:

0 = 1− c− p
rh

fa(w1) +

(
1− r
r

)2
λ1

λ2

f(w1)

f
(

(F c)
−1
(

(1−r)λ1

rλ2
F c(w1)

)) .
By some algebra, and replacing (F c)

−1
(

1−r
r

λ1

λ2
F c(w1)

)
by w2, we obtain that we must

have at optimum:

1

fa(w1)
+

1− r
r

1

fa(w2)
=
c− p
rh

.

Recall that fa is assumed to be decreasing. Thus, 1
fa(w1)

+ 1−r
r

1
fa(w2)

is increasing in

both w1 and w2. So, if we impose that its value at w1 =w2 = 0 to be larger than or equal

to c−p
rh

, then there cannot exist w1 > 0 and w2 > 0 which satisfy this equation, implying

that we cannot have w1 > 0 and w2 > 0 concurrently at optimum; i.e., we cannot have

both periods 1 and 2 overloaded at optimum. We need to impose that:

1

fa(0)
+

1− r
r

1

fa(0)
>
c− p
rh

.
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It is not hard to see that this is equivalent to:

c
h

fa(0)
+ p

< 1,

which is the condition that we impose in Assumption 2. Thus, we cannot have a non-

trivial solution where both 1 and 2 are overloaded at optimum.

2. n=m2/(1− r). In this case, we must have that 2 is critically-loaded or overloaded. We must also

have that n≥m1/r and m1 ≤ λ1. We consider two subcases: (a) nr=m1 and (b) nr >m1 = λ1.

(a) n=m2/(1− r) and nr >m1 = λ1. Since nr > λ1, we must have that 1 is underloaded. In this

case, n(1− r) = m2 implies that λ2/(1− r)≥ n = m2/(1− r) >m1/r = λ1/r, which implies that

r > r∗.

(b) n=m2/(1− r) and nr=m1. We must then consider two subcases: (i) n = m2/(1− r) and nr =

m1 = λ1 and (ii) n=m2/(1− r) and nr=m1 <λ1.

i. n=m2/(1− r) and nr=m1 = λ1. In this case, 1 must be critically loaded. Then, nr =

m2r

1−r = λ1 ≤ λ2r

1−r . This implies that r≥ r∗.

ii. n=m2/(1− r) and nr=m1 <λ1. In this case, we consider two new subcases: 1. n(1− r) =

m2 = λ2 and nr=m1 <λ1 and 2. n(1− r) =m2 <λ2 and nr=m1 <λ1.

A. n(1− r) =m2 = λ2 and nr=m1 <λ1. In this case, we must have that 2 is critically

loaded and 1 overloaded. But, since nr < λ1, nr = m2r

1−r = λ2r

1−r < λ1, which implies

that r < r∗.

B. n(1− r) =m2 <λ2 and nr=m1 <λ1. In this case, both periods 1 and 2 are over-

loaded, which we demonstrated above cannot happen under our initial assumption on

fa(0).

We are now ready to summarize the entire solution space to problem (9), and corresponding necessary

values on r. Based on the analysis above, we obtain the following partition of the solution space:

From Table 2, we see that if r < r∗, then it is not possible to have period 2 overloaded or that period

1 is underloaded. Also, if r > r∗, then it is not possible to have period 1 overloaded or that period 2 is

underloaded. And, it is not hard to see that if both periods are critically loaded at optimum then we must

have that n= λ1/r = λ2/(1− r) which implies that r = r∗. We now go further and express our problem in

ways that will be useful to proving the remaining propositions of the section.
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Period 1 Period 2 Necessary conditions on r

critically loaded, overloaded underloaded r < r∗

critically loaded, overloaded critically loaded r≤ r∗

critically loaded overloaded r > r∗

underloaded critically loaded, overloaded r > r∗

critically loaded critically loaded, overloaded r≥ r∗

overloaded critically loaded r < r∗

Table 2 Solution space of problem (9).

If r < r∗, then we must have that m2 = λ2 in the solution to problem (9). Additionally, all servers in

1 are busy so that n1 = m1 = nr and n = m1/r. If r > r∗, then we must have that m1 = λ1 and that

n2 = n(1− r) =m2 so that n=m2/(1− r). So, if r < r∗, then finding the optimal solution to problem (9)

amounts to solving the following problem:

(15)min
(Fc)−1

(
rλ2

(1−r)λ1

)
≥w1≥0

pλ1 + λ1

( c
r
− p
)
F c(w1) +

∫ w1

0

λ1hF
c(u)du.

The upper bound on w1 is because n is at least λ2/(1− r) since 2 cannot be overloaded.

If r > r∗, then finding the optimal solution to problem (9) amounts to solving the following problem:

(16)min
(Fc)−1

(
(1−r)λ1
rλ2

)
≥w2≥0

pλ2 + λ2

(
c

1− r
− p
)
F c(w2) +

∫ w2

0

λ2hF
c(u)du.

The upper bound on w2 is because n is at least λ1/r since 1 cannot be overloaded.

We assume that fa(·) has increasing hazard rate. For Proposition 3, we restrict attention to r < r∗ and

solve problem (15). For Proposition 4, we restrict attention to r > r∗ and solve problem (16).

Proof of Proposition 3. We begin with the case r < r∗. We focus on case (i) in Proposition 3. Then,

differentiating the objective of problem (15), we obtain:

derivative = λ1hF
c(w1)

(
1− c/r− p

h
fa(w1)

)
.

With an increasing hazard rate, we see that the only possible solutions for problem (15) are at the boundary,

i.e., we must have that either w1 = 0 or w1 = (F c)
−1
(

rλ2

(1−r)λ1

)
. Now, if we assume that the derivative of the

objective is negative at 0, then the objective function must be decreasing on its entire domain. Thus, the

optimal solution to problem (15) must be at w1 = (F c)
−1
(

rλ2

(1−r)λ1

)
. At this boundary point, we must have
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that 2 is critically loaded and 1 is overloaded (since w1 > 0 and n(1− r) = (λ1F
c(w1)/r)(1− r) = λ2). There

remains to specify conditions on r for which the derivative of the objective is negative at 0. It is not hard

to see that this amounts to 1− (c/r− p)fa(0)/h< 0 which is equivalent to r < c/(h/fa(0) + p), which under

Assumption 2 is assumed to be strictly less than 1.

For case (ii), we need to impose initial conditions such that the optimal solution to problem (15) is at

w1 = 0. For this, given the shape of the objective function under the assumption that fa(·) is increasing, it

suffices to show that the objective value at 0 is smaller than the objective value at w1 =∞. We obtain:

value of objective at 0 = pλ1 +λ1(c/r− p),

value of objective at ∞= pλ1 +λ1h/θ,

using the fact that
∫∞
0
F c(u)du = 1/θ. Thus, imposing that the objective is minimized at 0 is equivalent

to imposing that r > c/(h/θ+ p) (while also imposing that r < r∗). In this case, 1 is critically loaded at

optimum, and 2 is underloaded.

Non-overlapping intervals. There remains to check that the intervals for r specified in parts (i) and (ii)

are non-overlapping. For that, note that for distributions with increasing hazard rates, the mean residual

lifetime (MRL) must be decreasing. Let mt denote the mean residual lifetime. Then, it is well-known that:

fa(t) =
m′t + 1

mt

.

Now, plug in 0: fa(0) =
m′0+1

m0
; but m′0 < 0 since the MRL is decreasing. Thus, we must have that fa(0)< θ

since m0 = 1/θ. This implies that c/(h/θ+ p)> c/(h/fa(0) + p).

Proof of Proof of Proposition 4. We now restrict attention to r > r∗, and solve problem (16). We focus

on case (i). We begin by differentiating the objective of the problem:

derivative = λ2hF
c(w2)

(
1− c/(1− r)− p

h
fa(w2)

)
.

With an increasing hazard rate, the optimum value of problem (16) must occur at the boundary, i.e., we

must have that either w2 = 0 or w2 = (F c)
−1
(

(1−r)λ1

rλ2

)
. If we impose that the value of the objective is smaller

at w2 = 0 than at w2 =∞, then it must be that this function is minimized at 0 . We have that:

value of objective at 0 = pλ2 +λ2(c/(1− r)− p),

value of objective at ∞= pλ2 +λ2h/θ,
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Thus, the objective is smaller at 0 if, and only if: r < 1− c/(h/θ+ p). For these values of r, we have that 2

is critically loaded and 1 is underloaded.

For case (ii), it suffices to impose that the derivative of the objective is negative at 0. This amounts to

imposing that r > 1− c/(p+h/fa(0)). Finally, we need to ensure that the intervals in cases (i) and (ii) are

non-overlapping. This follows directly from the MRL argument used above.

D. Proof of Proposition 5

We now assume that fa is decreasing. We begin by considering r < r∗, and solving problem (15). Recall that

the derivative of the objective is given by:

derivative = λ1hF
c(w1)

(
1− c/r− p

h
fa(w1)

)
.

Then, it is readily seen that with a decreasing hazard rate, we may have an interior optimal solution w∗ > 0

if there exists such w∗ such that 1− c/r−p
h

fa(w
∗) = 0. Under our assumption, c < p+ h/fa(0). Now, pick

w′ > 0. Then, we must have that c < p+h/fa(w
′) since fa(w

′)< fa(0). Thus, there must exist r′ ∈ (0,1) such

that c/r′ = p+h/fa(w
′), in particular: 0< r′ = c/(p+h/fa(w

′))< 1. Since fa is continuous and heavy-tailed,

it must be that limx→∞ fa(x) = 0. Then, there exists w′′ > 0 such that fa(w
′′) = y for every y < h/(c/r′− p).

In particular, for every r′′ ≤ r′, let y = h/(c/r′′− p)≤ h/(c/r′− p). Then, there must exist w′′ > 0 such that

fa(w
′′) = h/(c/r′′− p) i.e., that ( c

r′′
− p)fa(w′′) = h. We must also have that w′′ >w′ since fa is decreasing.

In this case, for all r ≤ r′, we must have that 1 is overloaded at optimum. Denote by w∗1 the optimal wait

time. If w∗1 < (F c)
−1
(

rλ2

(1−r)λ1

)
, then 2 is underloaded at optimum. Otherwise, we have that 2 is critically

loaded at optimum. By choosing r small enough, we can ensure that w> (F c)
−1
(

rλ2

(1−r)λ1

)
. This can be seen

by considering an r such that r′ > r→ 0. Then, there exists w such that c/r= h/fa(w) +p, and this w→∞.

So, eventually, w∗1 will exceed (F c)
−1
(

rλ2

(1−r)λ1

)
. Thus, there exist an r0 such as in case (i).

We now prove case (ii). If we impose that the derivative of the objective is positive at 0, then we guarantee

that the objective is minimized at w1 = 0. In this case, 1 is critically loaded and 2 is underloaded. Imposing

that the derivative of the objective is positive at 0 is equivalent to imposing that: r > c/(h/fa(0) + p) (recall

that we assume r < r∗ as well).

We now consider r > r∗, and solving problem (16). Recall that the derivative of the objective is given by:

derivative = λ2hF
c(w2)

(
1− c/(1− r)− p

h
fa(w2)

)
.
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If we impose that this derivative is positive at the origin, then we guarantee that the objective is minimized at

w2 = 0, for which 2 is critically loaded and 1 is underloaded. Imposing that the derivative of the objective is

positive at 0 is equivalent to imposing that: r < 1− c/(h/fa(0) + p) (recall that we assume that r > r∗). This

proves case (iii). We now turn to proving case (iv). It is readily seen that with a decreasing hazard rate, we

may have an interior optimal solution w∗ > 0 if there exists such w∗ such that 1− c/(1−r)−p
h

fa(w
∗) = 0. In this

case, we must have that 2 is overloaded since w2 =w∗ > 0. If w∗ < (F c)
−1
(

(1−r)λ1

rλ2

)
, then 1 is underloaded

at optimum. Otherwise, we have that 1 is critically loaded at optimum. The proof follows from here by

arguments very similar to case (i) in Proposition 5.

E. Additional Numerical Results

E.1. Critically-loaded and Underloaded Regimes: Theorem 1

The results for the asymptotic accuracy of fluid performance measures in the critically-loaded and under-

loaded regimes with an exponential distribution are summarized in Table 3. These results substantiate the

results of Theorem 1.

E.2. Generally-distributed Service Times: Theorem 1

In Tables 4 and 5, we illustrate that our asymptotic results of Theorem 1 continue to hold with non-

exponential service times as well: There, we consider lognormal service times with mean 1 and variance e−1.

We consider a lognormal distribution because service times in practice have been shown to be well-modelled

by lognormal distribution.

E.3. Alternative Abandonment-Time distributions: Theorem 2

The results for the asymptotic accuracy of fluid-based staffing prescriptions for the uniform on (0,2) and

Pareto distribution with shape parameter 2 and mean equal to 1 are given in Figures 7 and 8. The remaining

parameters are as for the exponential distribution in Figures 1 and 2. As can be seen from the figures, the

numerical results obtained substantiate Theorem 2.



Ibrahim: Staffing with a Random Number of Servers
Article submitted to ; manuscript no. (Please, provide the manuscript number!) 41

Critically loaded (ρ= 1)

n E[QN ] E[αN ] rnq̄ rnᾱ |E[QN ]− rnq̄| |E[αN ]− rnᾱ|

30 1.74 ±0.14 1.78 ±0.14 0 0 1.7 1.8

50 2.30 ±0.18 2.34 ±0.18 0 0 2.3 2.3

70 2.61 ±0.19 2.66 ±0.19 0 0 2.6 2.7

100 3.22 ±0.25 3.27 ±0.25 0 0 3.2 3.3

Underloaded regime (ρ= 0.85)

n E[QN ] E[αN ] rnq̄ rnᾱ |E[QN ]− rnq̄| |E[αN ]− rnᾱ|

300 0.513 ±0.084 0.578 ±0.087 0 0 0.51 0.58

500 0.230 ±0.047 0.276 ±0.050 0 0 0.23 0.28

700 0.164 ±0.042 0.190 ±0.044 0 0 0.16 0.19

1000 0.0667 ±0.027 0.0754± 0.029 0 0 0.067 0.075

Table 3 Asymptotic accuracy of fluid approximations with exponential abandonment and N ∼Bin(n,0.4).
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Exponential Abandonment

n E[QN ] E[αN ] rnq̄ rnᾱ |E[QN ]− rnq̄| |E[αN ]− rnᾱ|

30 5.48 ±0.23 5.49 ±0.22 4.8 4.8 0.68 0.69

50 8.50 ±0.30 8.52 ±0.30 8 8 0.50 0.52

70 11.4 ±0.37 11.4 ±0.37 11.2 11.2 0.19 0.20

100 16.1 ±0.47 16.1 ±0.47 16 16 0.084 0.094

Pareto Abandonment

n E[QN ] E[αN ] rnq̄ rnᾱ |E[QN ]− rnq̄| |E[αN ]− rnᾱ|

30 8.59 ±0.20 5.18 ±0.22 9.70 4.8 1.1 0.38

50 15.1 ±0.22 8.30 ±0.30 16.2 8 1.0 0.30

70 21.5 ±0.27 11.1 ±0.41 22.6 11.2 1.14 0.101

100 31.7 ±0.25 16.0 ±0.46 32.3 16 0.68 0.027

Uniform Abandonment

n E[QN ] E[αN ] rnq̄ rnᾱ |E[QN ]− rnq̄| |E[αN ]− rnᾱ|

30 10.8 ±0.46 4.82 ±0.37 12.5 4.8 1.7 0.019

50 19.3 ±0.54 7.95 ±0.51 20.9 8 1.6 0.051

70 27.8 ±0.64 11.2 ±0.63 29.2 11.2 1.4 0.0064

100 40.7 ±0.65 16.1 ±0.79 41.7 16 1.1 0.057

Table 4 Asymptotic accuracy of fluid performance measures in the overloaded regime (ρ= 1.4) with lognormal

service times with mean 1 and variance e− 1 and N ∼Bin(n,0.4).
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Critically loaded (ρ= 1)

n E[QN ] E[αN ] rnq̄ rnᾱ |E[QN ]− rnq̄| |E[αN ]− rnᾱ|

30 1.80 ±0.14 1.85 ±0.14 0 0 1.8 1.9

50 2.24 ±0.17 2.29 ±0.17 0 0 2.2 2.3

70 2.62 ±0.22 2.68 ±0.22 0 0 2.6 2.7

100 3.19 ±0.26 3.26 ±0.26 0 0 3.19 3.26

Underloaded regime (ρ= 0.85)

n E[QN ] E[αN ] rnq̄ rnᾱ |E[QN ]− rnq̄| |E[αN ]− rnᾱ|

300 0.488 ±0.074 0.552 ±0.076 0 0 0.49 0.55

500 0.275 ±0.066 0.318 ±0.069 0 0 0.28 0.32

700 0.148 ±0.043 0.178 ±0.048 0 0 0.15 0.18

1000 0.0645 ±0.024 0.0772 ±0.026 0 0 0.065 0.077

Table 5 Asymptotic accuracy of fluid approximations with exponential abandonment, N ∼Bin(n,0.4), and

lognormal service times with mean 1 and variance e− 1.


