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SUPPLEMENTARY MATERIAL

Abstract from main paper

Motivated by the recent interest in making delay announcements in large service systems, such

as call centers, we investigate the accuracy of announcing the waiting time of the Last customer

to Enter Service (LES). In practice, customers typically respond to delay announcements by

either balking or by becoming more or less impatient, and their response alters system perfor-

mance. We study the accuracy of the LES announcement in single-class multi-server Markovian

queueing models with announcement-dependent customer behavior. We show that, interest-

ingly, even in this stylized setting, the LES announcement may not always be accurate. This

motivates the need to study its performance carefully, and to determine conditions under which

it is accurate. Since the direct analysis of the system with customer response is prohibitively

difficult, we focus on many-server heavy-traffic analysis instead. We consider the quality-and-

efficiency-driven (QED) and the efficiency-driven (ED) many-server heavy-traffic regimes and

prove, under both regimes, that the LES prediction is asymptotically accurate if, and only if,

asymptotic fluctuations in the queue length process are small. This result provides an easy

check for the accuracy of LES in practice. We go further by establishing initial conditions

which guarantee the asymptotic accuracy of LES. We supplement our theoretical results with

an extensive simulation study.

1. Outline of this Supplement

In §2, we consider the system without customer response and develop an adjustment to the

LES announcement which performs better than LES when the system is initialized away from

its steady state, at fluid scale. In §3, we present tables corresponding to Figures 2 and 3

from the main paper. Finally, in §4, we present additional simulation results which relate the

queue-length and wait-time relative errors for alternative model parameters such as the traffic

intensity, the number of servers, and time-varying characteristics of the arrival process.



2. Adjustment to the LES Announcement in the ED Regime without Cus-
tomer Response

When the system has not yet reached its steady state, at fluid scale, we can exploit the dynamics

of the M/M/N + M fluid model to develop adjustments for the LES prediction. In §2.2, we

show that those adjustments are more accurate than the LES prediction.

Let w(s) denote the waiting time, at time s, in the fluid model. We use the same notation

as above, but omit dependence on N . To simplify notation, we do a time change so that τt ≡ 0.

We proceed as follows.

Step 1. Express qLES ≡ q(τt) in terms of wLES ≡ w(τt).

Let qo(s) denote the queue length in the fluid model at time s ≥ 0 with the arrival process

turned off at τt ≡ 0. Then, qo(s) must satisfy the ODE in (2.1) with initial condition qo(0) =

qLES :

q′(s) ≡ dq(s)

ds
= ρ− 1− θq(s) , (2.1)

The ODE in (2.1) has the solution

qo(s) = (qLES +
1

θ
)e−θs − 1

θ
, for s ≥ 0 . (2.2)

Noting that wLES is the first passage time to the zero state, we get that

qo(wLES) = 0 . (2.3)

Plugging in wLES and solving (2.3) for qLES yields that

qLES =
1

θ
eθwLES − 1

θ
. (2.4)

Step 2. Express q(t) = q(wLES) in terms of wLES .

We assume here that the new customer arrives exactly when the LES customer enters service.

This assumption is reasonable because the difference between the arrival times of the LES and

current customer is asymptotically negligible in the ED limit. We know that q(t) must satisfy

the ODE in (2.1) with initial queue length equal to qLES . We solve (2.1) and substitute in

wLES :

q(wLES) =
ρ− 1

θ
+ (qLES −

ρ− 1

θ
)e−θwLES . (2.5)

Plugging in the value of qLES in (2.4) yields:

q(t) = q(wLES) =
ρ

θ
− ρ

θ
e−θwLES . (2.6)

2



Step 3. Express w(t) in terms of wLES .

There remains to solve for w(t) in terms of wLES . Let qto(s) denote the queue length in the

fluid model at time t + s, s ≥ 0, with the arrival process turned off at t. Then, qto(s) must

satisfy the ODE in (2.7) with initial condition qto(0) = q(t) = q(wLES) given in (2.6).

dq(u)

du
= −1− θq(u) , (2.7)

The solution to that ODE is given by

qto(s) = (q(t) +
1

θ
)e−θs − 1

θ
for s ≥ 0 . (2.8)

But, w(t) is the first passage time from state qto(0) to state 0, so w(t) must solve the equation

qto(w(t)) = 0 , (2.9)

for qto(s) in (2.8). Plugging in the value of q(t) in (2.6) and solving for w(t) yields:

w(t) =
1

θ
ln(ρ+ 1− ρe−θwLES ) . (2.10)

For a given LES announcement w, our first adjusted announcement, LESa, is given by:

LESa announcement =
1

θ
ln(ρ+ 1− ρe−θw) . (2.11)

If w = ln(ρ)/θ (steady-state fluid limit), then the LES announcement and its adjustment

coincide. It is important to note that letting ρ approach 1 in (2.11) yields the adjustment for

LES in the QED regime.

2.1. Alternative Adjustments

The improved performance of the adjusted LES announcement of §2 comes at the expense of

exploiting more information about the system, such as the abandonment rate and the traffic

intensity; see (2.11). To overcome this tradeoff between efficiency and ease of implementation,

we experimented with several adjustments which do not rely on this additional information.

We considered announcements based on several past LES delays (typically two or three)

experienced by successive customers in the system. We fit linear, quadratic, and exponential

functions to those delays (as a function of the time of arrival to the system), and extrapolated

those functions to the time of arrival of the current customer. We did so to obtain adjusted

announcements based on additional past delays besides the most recent LES delay. Here,

we do not include a separate discussion for those adjusted announcements because numerous
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simulation experiments indicated that they tend to be more accurate than LES in the transient

state of the system, but less accurate than LES in steady state. In practice, it is not clear how

to determine whether or not a system is in its steady state. Thus, those adjustments may not

be very useful in a real-life system.

2.2. LES versus Adjustments

In Tables 1 and 2, we present point and 95% confidence interval estimates for the ASE of the

LES and LESa predictors. Our estimates are based on 10 independent simulation replications.

We focus on both the transient and steady states of the M/M/500 + M model: We increase

the number of arrivals in our sample, from 2000 to 50000. With a large number of arrivals, the

system approaches its steady state. We compare ASE(LES) and ASE(LESa) for each sample.

We consider both the QED (Table 1) and ED (Table 2) limiting regimes.

We consider three different initial conditions for our systems: (i) the system is initially

empty; (ii) all servers are initially busy but the queue is initially empty; (iii) all servers are

initially busy, and the initial number of customers in queue is equal to the number of servers (in

our system, 500). We consider a relatively large number of servers because fluid approximations

are relatively accurate in that case. We expect to have ASE(LES) ≈ ASE(LESa) when the

system approaches its steady state. In that case, LES is asymptotically accurate. We let the

traffic intensity ρ = 1.0 for the QED regime, and ρ = 1.4 for the ED regime.

Table 1 shows that LESa is more effective than LES when the state of the system is far

from its steady state condition; e.g, in the QED regime, this happens with busy servers and

a long queue. Table 1 shows that, with all servers initially busy and a long initial queue,

ASE(LES)/ASE(LESa) decreases from roughly 11 to roughly 3 as the number of arrivals in

our sample ranges from 2000 to 50000. That is, as expected, as the system approaches its

steady state condition, the difference in performance between LES and LESa decreases.

Consistent with Table 1, Table 2 shows that, in the ED regime, LESa is generally more

effective than LES. In particular, the difference in performance between LES and LESa is most

significant when the system is farthest from its steady state condition. Table 2 shows that,

with an initially empty system, ASE(LES)/ASE(LESa) ranges from roughly 3 to 1.2 as the

number of arrivals in our sample ranges from 2000 to 50000. The difference in performance

between LES and LESa is smaller when the system is initialized in its steady state condition:

ASE(LES)/ASE(LESa) ranges from roughly 2 to 1.2 when all servers are initially busy and

the queue length is initially large.
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Empty system N servers busy, QL = 0 N servers busy, QL = N

n ASE(LES) ASE(LESa) ASE(LES) ASE(LESa) ASE(LES) ASE(LESa)

2000 0.787 0.792 1.33 1.32 102 9.23
±0.40 ±0.41 ±0.48 ±0.47 ± 19 ± 2.5

5000 2.38 2.51 1.83 1.81 45.4 5.68
±0.85 ± 0.91 ±0.33 ± 0.34 ± 9.9 ± 1.3

10000 2.32 2.38 1.81 1.82 24.6 3.92
±0.63 ±0.68 ±0.21 ±0.22 ± 3.7 ± 0.71

50000 2.16 2.18 1.99 2.02 7.36 2.64
± 0.16 ±0.17 ± 0.15 ± 0.16 ± 0.93 ± 0.14

Table 1: Comparison of the LES and LESa predictors in the M/M/500 + M model in the
QED limiting regime (ρ = 1.0) with no customer reactions. The ASE’s are reported in units
of 10−4. We vary the number of arrivals, n, in our sample and the initial state of the system.

3. Supporting Tables for Figures 2 and 3 of the main paper

In Tables 3 and 4, we present point and 95% confidence interval estimates corresponding to

Figures 2 and 3 of the main paper. We also include corresponding values for RASE(LES).

Tables 3 and 4 both show that RASE(LES) decreases as N increases. This illustrates the

asymptotic accuracy of the LES announcement, and substantiates our theoretical results from

the previous sections. Table 3 shows that, in the QED regime, the convergence of the RASE

to 0 is relatively slow: This is because the magnitude of waiting times is asymptotically small

in the QED limit.

4. Simulation Study Relating Queue-Length and Wait-Time Errors

In this section (Tables 5-10), we conduct a detailed simulation study which aims at gaining more

concrete insights into the respective magnitudes of the queue-length and wait-time relative

errors corresponding to our main asymptotic result from the main paper. The objective behind

this simulation study is to assess how the relative error in the queue length translates into the

accuracy of the LES prediction. Based on our simulation study, we can now answer questions

such as: Under given modelling assumptions, if the reported queue-length error is less than,

say, 5%, what can we say about the corresponding relative wait-time error? We provide some

additional explanation below.
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Empty system N servers busy, QL = 0 N servers busy, QL = N

n ASE(LES) ASE(LESa) ASE(LES) ASE(LESa) ASE(LES) ASE(LESa)

2000 2.00 0.652 3.79 0.781 3.39 1.79
± 0.74 ±0.14 ±0.66 ±0.31 ± 1.5 ±0.6

5000 2.90 1.07 3.19 1.45 2.13 1.46
± 0.45 ±0.18 ± 0.88 ±0.63 ±0.50 ± 0.40

10000 2.46 1.48 2.70 1.70 2.15 1.72
±0.45 ±0.38 ±0.65 ±0.52 ± 0.46 ± 0.39

50000 2.36 1.92 2.34 1.89 2.37 2.00
± 0.15 ±0.15 ±0.21 ±0.18 ±0.25 ± 0.21

Table 2: Comparison of the LES and LESa predictors in the M/M/500 +M model in the ED
limiting regime (ρ = 1.4) with no customer reactions. The ASE’s are reported in units of 10−3.
We vary the number of arrivals, n, in our sample and the initial state of the system.

4.1. Description of the Experiments

In an effort to make our simulation study general and relevant, and to verify the robustness of

our results, we explore the impact of several modelling assumptions on the magnitudes of the

above errors. In particular, we consider the following:

1. Alternative system sizes, ranging from 50 to 1000; we generally focus on large systems

where stochastic fluctuations are relatively small to reduce the effect of “noisy” observa-

tions.

2. Alternative forms for the abandonment-rate function, θ(·). In particular we consider

three functions: θ(w) = a + bw, θ(w) = b − e−aw, and θ(w) = b + eaw, for different

parameter values a and b. We vary the values of a and b so as to study the impact of

customer response on the magnitudes of the reported queue-length and wait-time errors.

Indeed, having a larger a value corresponds to “stronger” customer reactions. We vary

a and b in such a way to keep the expected waiting time in the system constant; we do

so in order to maintain comparable levels of system congestion (more precisely, we keep

the fluid approximation of the waiting time constant)

3. Alternative values for the traffic intensity so as to vary the level of congestion in the

system. In particular, we consider ρ = 1.2 and ρ = 1.4.

4. Both time-varying and stationary arrivals. For time-varying arrivals, we consider the

function form in equation (35) of the main paper and vary both the frequency and
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N ASE(LES) Waiting time RASE(LES) N×ASE(LES)

10 0.0911 0.251 1.20 0.911
±7.4× 10−5 3.3× 10−4 1.4× 10−4

30 1.66× 10−2 0.140 0.921 0.497
±2.4× 10−5 ±1.0× 10−4 ±8.3× 10−5

50 7.54× 10−3 0.110 0.791 0.377
±9.1× 10−6 ±2.1× 10−4 ±1.3× 10−4

70 4.58× 10−3 9.41× 10−2 0.719 0.320
±5.6× 10−6 ±1.5× 10−4 ±1.5× 10−4

100 2.64× 10−3 7.82× 10−2 0.658 0.264
±3.6× 10−6 ±1.9× 10−4 ±1.8× 10−4

300 5.07× 10−4 4.58× 10−2 0.491 0.152
±5.6× 10−6 ±7.1× 10−4 ±7.0× 10−4

500 2.36× 10−4 3.54× 10−2 0.434 0.118
±6.5× 10−6 ±8.3× 10−4 8.8× 10−4

700 1.42× 10−4 3.01× 10−2 0.396 0.0995
±3.0× 10−6 ±9.2× 10−4 ±9.2× 10−4

1000 8.39× 10−5 2.56× 10−2 0.358 0.0839
±2.3× 10−6 ±9.4× 10−4 ±1.1× 10−3

Table 3: Performance of the LES announcement in the M/M/N + M model in the QED
regime (ρ = 1.0) in steady state. We vary the number of servers, N . We report point and 95%
confidence interval estimates of ASE(LES) and waiting times in the system. We also compute
point estimates of RASE(LES).

amplitude of the sinusoidal arrival-rate function.

In the above simulation experiments, and for each simulated model, we collect the relative

queue-length errors reported, and partition these into the following intervals:

(0, 0.05), (0.05, 0.1), (0.1, 0.2), (0.2, 0.3), (0.3, 0.4), (0.4, 0.5), and (0.5, 1).

For example, the first interval corresponds to queue-length errors that are smaller than

5%, while the second interval corresponds to queue-length errors which are between 5% and

10%. For each interval, we collect the corresponding relative wait-time errors in the simulation

run. For example, we collect all relative wait-time errors which correspond to queue-length

errors that are smaller than 5% (first interval), or those which correspond to queue-length

errors that are between 5% and 10% (second interval), and so on. As such, we collect data

about wait-time errors corresponding to each of the queue-length error intervals above. We

then compute summary statistics (on the wait-time errors) to assess precisely how the error in

the queue length translates into the wait-time error. These are the W̄ columns in the tables.
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N ASE(LES) Waiting time RASE(LES) N×ASE(LES)

10 0.143 0.673 0.562 1.43
±2.1× 10−4 ±6.1× 10−4 ±7.7× 10−5

30 4.01× 10−2 0.627 0.320 1.20
±2.0× 10−4 ±1.5× 10−3 ±9.7× 10−5

50 2.33× 10−2 0.618 0.247 1.17
±1.3× 10−4 ±1.3× 10−3 ±7.7× 10−5

70 1.64× 10−2 0.614 0.209 1.15
±9.8× 10−5 ±1.1× 10−3 ±7.1× 10−5

100 1.14× 10−2 0.612 0.175 1.14
±7.1× 10−5 ±1.1× 10−3 ±6.4× 10−5

300 3.75× 10−3 0.609 0.101 1.13
±4.3× 10−5 ±1.05 ±7.0× 10−5

500 2.26× 10−3 0.609 7.81× 10−2 1.13
±3.4× 10−5 ±1.9× 10−3 ±5.3× 10−5

700 1.61× 10−3 0.607 6.60× 10−2 1.13
±1.3× 10−5 ±1.3× 10−3 ±3.2× 10−5

1000 1.11× 10−3 0.607 5.49× 10−2 1.11
±1.3× 10−5 ±1.7× 10−3 ±3.6× 10−5

Table 4: Performance of the LES announcement in the M/M/N +M model in the ED regime
(ρ = 1.4) in steady state. We vary the number of servers, N . We report point and 95%
confidence interval estimates of ASE(LES) and waiting times in the system. We also compute
point estimates of RASE(LES).

Additionally, for each queue-length interval, we report the sample size of such queue-length

errors; these are the n columns in the tables.

4.2. Remarks

Based on our simulation results, we can formulate the following remarks on how the relative

queue-length and wait-time errors are related in the system. In general, we also observe that

Tables 5-10 show that wait-time errors typically fluctuate less extremely than queue-length

errors.

• Impact of N . As can be seen from Tables 5-7, increasing the number of servers leads

to decreasing the magnitude of relative wait-time errors in the system. That is not

surprising due to the economies of scale in the system. For example, for N = 50, the

median waiting time value corresponding to queue-length errors that are smaller than

5% is as high as roughly 20%. However, this error is close to 4% for N = 1000.

• Impact of ρ. As can be seen in comparing Tables 7 and 8, the impact of varying ρ is not
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entirely straightforward. Indeed, we expect that increasing ρ would lead to a rise in the

waiting times in the system. However, we observe that as ρ increases, the median wait-

time value corresponding to small queue-length errors (e.g., < 0.05) decreases, whereas

the median wait-time value corresponding to large queue-length errors (> 0.5) increases.

• Impact of time-varying arrivals. From Table 10, we see that the impact of varying the

frequency of the arrival-rate function, γ is complicated as well. For example, comparing

columns 1 and 3 of the table shows that increasing γ leads to increasing the median wait-

time value for small values of queue-length errors, but it leads to decreasing the median

wait-time value for large values of queue-length errors. On the other hand, increasing

the amplitude of the arrival-rate function, α, leads to increasing the median wait-time

error value throughout.

• Impact of the abandonment-rate function. In comparing our results across Tables 5-10,

we see that the abandonment-rate function does not have a strong impact and the results

we obtain for all functions considered are comparable.
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Table 5: N = 50, ρ = 1.4

θ(w) = b− exp(−aw)

a = 0, b = 2 a = 0.5, b = 1.85 a = 1, b = 1.71 a = 1.5, b = 1.6 a = 2, b = 1.51

QL W̄ n W̄ n W̄ n W̄ n W̄ n
< 0.05 0.199 3990 0.186 4137 0.201 3980 0.200 4157 0.190 4132
∈ (0.05, 0.1) 0.207 3937 0.193 3916 0.200 3785 0.206 3928 0.194 3883
∈ (0.1, 0.2) 0.203 7023 0.204 7071 0.202 6956 0.205 7062 0.201 7075
∈ (0.2, 0.3) 0.214 5573 0.215 5628 0.218 5687 0.215 5508 0.200 5645
∈ (0.3, 0.4) 0.234 4234 0.230 4330 0.234 4275 0.233 4216 0.235 4450
∈ (0.4, 0.5) 0.257 3081 0.259 2966 0.259 2930 0.250 2982 0.261 2991
> 0.5 0.315 6472 0.313 6228 0.314 6266 0.316 6399 0.299 6034

θ(w) = aw + b

a = 0, b = 1 a = 0.5, b = 0.83 a = 1, b = 0.66 a = 1.5, b = 0.5 a = 2, b = 0.33

QL W̄ n W̄ n W̄ n W̄ n W̄ n
< 0.05 0.199 3990 0.186 4135 0.204 4274 0.198 3875 0.213 3794
∈ (0.05, 0.1) 0.207 3937 0.196 3939 0.209 3981 0.199 3844 0.207 3682
∈ (0.1, 0.2) 0.203 7023 0.203 7060 0.213 7238 0.205 7377 0.219 6953
∈ (0.2, 0.3) 0.214 5573 0.215 5571 0.215 5574 0.223 6039 0.232 5516
∈ (0.3, 0.4) 0.234 4234 0.229 4346 0.231 4335 0.240 4437 0.242 4577
∈ (0.4, 0.5) 0.257 3081 0.252 2982 0.244 2921 0.256 2996 0.259 3177
> 0.5 0.315 6472 0.312 6243 0.298 6078 0.286 6041 0.293 6557

θ(w) = b+ exp(aw)

a = 0, b = 0 a = 0.5, b = −0.18 a = 1, b = −0.4 a = 1.5, b = −0.66 a = 2, b = −0.96

QL W̄ n W̄ n W̄ n W̄ n W̄ n
< 0.05 0.199 3990 0.203 4004 0.201 4123 0.218 4090 0.225 3665
∈ (0.05, 0.1) 0.207 3937 0.207 3856 0.198 3980 0.209 3993 0.233 3843
∈ (0.1, 0.2) 0.203 7023 0.216 6968 0.205 7190 0.222 7136 0.236 6944
∈ (0.2, 0.3) 0.214 5573 0.227 5491 0.213 5571 0.227 5447 0.248 5521
∈ (0.3, 0.4) 0.234 4234 0.239 4167 0.227 4452 0.238 4284 0.268 4462
∈ (0.4, 0.5) 0.257 3081 0.254 2938 0.243 3102 0.261 2960 0.284 3164
> 0.5 0.315 6472 0.311 6608 0.311 6039 0.296 6253 0.325 6870
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Table 6: N = 100, ρ = 1.4

θ(w) = b− exp(−aw)

a = 0, b = 2 a = 0.5, b = 1.85 a = 1, b = 1.71 a = 1.5, b = 1.6 a = 2, b = 1.51

QL W̄ n W̄ n W̄ n W̄ n W̄ n
< 0.05 0.136 12363 0.137 11805 0.137 11693 0.138 11747 0.140 11989
∈ (0.05, 0.1) 0.135 11577 0.134 11577 0.136 11667 0.136 11539 0.140 11405
∈ (0.1, 0.2) 0.144 19256 0.145 19716 0.144 19441 0.143 19495 0.152 18738
∈ (0.2, 0.3) 0.159 11985 0.155 12018 0.155 12348 0.155 12368 0.166 12229
∈ (0.3, 0.4) 0.180 6796 0.178 6665 0.181 6632 0.180 6613 0.177 7120
∈ (0.4, 0.5) 0.208 3322 0.201 3370 0.206 3407 0.211 3427 0.190 3876
> 0.5 0.253 3961 0.242 4004 0.235 3967 0.233 3966 0.218 4376

θ(w) = aw + b

a = 0, b = 1 a = 0.5, b = 0.83 a = 1, b = 0.66 a = 1.5, b = 0.5 a = 2, b = 0.33

QL W̄ n W̄ n W̄ n W̄ n W̄ n
< 0.05 0.136 12363 0.137 11683 0.139 11703 0.141 11913 0.142 11749
∈ (0.05, 0.1) 0.135 11577 0.136 11593 0.138 11558 0.140 11117 0.147 10953
∈ (0.1, 0.2) 0.144 19256 0.145 19689 0.144 19368 0.150 18985 0.155 18870
∈ (0.2, 0.3) 0.159 11985 0.156 12105 0.159 12440 0.165 12450 0.168 12552
∈ (0.3, 0.4) 0.180 6796 0.179 6691 0.181 6560 0.187 7269 0.182 7205
∈ (0.4, 0.5) 0.208 3322 0.200 3386 0.206 3483 0.213 3729 0.194 3581
> 0.5 0.253 3961 0.239 4008 0.233 4043 0.239 4059 0.227 4448

θ(w) = b+ exp(aw)

a = 0, b = 0 a = 0.5, b = −0.18 a = 1, b = −0.4 a = 1.5, b = −0.66 a = 2, b = −0.96

QL W̄ n W̄ n W̄ n W̄ n W̄ n
< 0.05 0.136 12363 0.139 11613 0.140 11648 0.147 11591 0.155 11347
∈ (0.05, 0.1) 0.135 11577 0.135 11717 0.138 11603 0.147 10994 0.151 10819
∈ (0.1, 0.2) 0.144 19256 0.145 19538 0.145 19287 0.153 18786 0.161 18485
∈ (0.2, 0.3) 0.159 11985 0.155 12167 0.160 12329 0.172 12390 0.174 12448
∈ (0.3, 0.4) 0.180 6796 0.179 6708 0.183 6698 0.187 7536 0.188 7563
∈ (0.4, 0.5) 0.208 3322 0.204 3410 0.209 3537 0.217 3908 0.218 3942
> 0.5 0.253 3961 0.237 4002 0.234 4053 0.244 4350 0.235 4754

11



Table 7: N = 1000, ρ = 1.4

θ(w) = b− exp(−aw)

a = 0, b = 2 a = 0.5, b = 1.85 a = 1, b = 1.71 a = 1.5, b = 1.6 a = 2, b = 1.51

QL W̄ n W̄ n W̄ n W̄ n W̄ n
< 0.05 0.043 369153 0.043 367805 0.044 366215 0.044 365055 0.044 364351
∈ (0.05, 0.1) 0.048 222987 0.049 222343 0.049 222811 0.049 222390 0.050 222663
∈ (0.1, 0.2) 0.062 100609 0.062 102383 0.063 103489 0.063 104964 0.063 105274
∈ (0.2, 0.3) 0.105 4179 0.108 4372 0.109 4362 0.108 4420 0.108 4526
∈ (0.3, 0.4) 0.176 179 0.169 205 0.175 231 0.167 268 0.165 264
∈ (0.4, 0.5) 0.185 62 0.210 62 0.202 62 0.237 75 0.231 91
> 0.5 0.405 227 0.407 226 0.407 226 0.414 224 0.421 227

θ(w) = aw + b

a = 0, b = 1 a = 0.5, b = 0.83 a = 1, b = 0.66 a = 1.5, b = 0.5 a = 2, b = 0.33

QL W̄ n W̄ n W̄ n W̄ n W̄ n
< 0.05 0.043 369153 0.043 367111 0.044 364401 0.044 361064 0.045 358869
∈ (0.05, 0.1) 0.048 222987 0.049 222769 0.050 222611 0.050 223198 0.051 222028
∈ (0.1, 0.2) 0.062 100609 0.062 102668 0.063 105281 0.063 107770 0.064 110748
∈ (0.2, 0.3) 0.105 4179 0.109 4354 0.108 4552 0.110 4784 0.113 5141
∈ (0.3, 0.4) 0.176 179 0.167 205 0.168 254 0.168 246 0.173 250
∈ (0.4, 0.5) 0.185 62 0.210 63 0.232 73 0.221 105 0.224 116
> 0.5 0.405 227 0.407 226 0.414 224 0.421 229 0.407 244

θ(w) = b+ exp(aw)

a = 0, b = 0 a = 0.5, b = −0.18 a = 1, b = −0.4 a = 1.5, b = −0.66 a = 2, b = −0.96

QL W̄ n W̄ n W̄ n W̄ n W̄ n
< 0.05 0.043 369153 0.043 366642 0.044 361616 0.046 355608 0.048 342724
∈ (0.05, 0.1) 0.048 222987 0.049 222621 0.050 223243 0.052 222565 0.054 225116
∈ (0.1, 0.2) 0.062 100609 0.062 103232 0.063 107103 0.066 113035 0.069 121743
∈ (0.2, 0.3) 0.105 4179 0.109 4406 0.112 4869 0.116 5549 0.120 7011
∈ (0.3, 0.4) 0.176 179 0.174 209 0.167 256 0.175 278 0.182 421
∈ (0.4, 0.5) 0.185 62 0.215 60 0.235 82 0.223 113 0.220 114
> 0.5 0.405 227 0.407 226 0.421 227 0.407 248 0.406 267
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Table 8: N = 1000, ρ = 1.2

θ(w) = b− exp(−aw)

a = 0, b = 2 a = 0.5, b = 1.91 a = 1, b = 1.83 a = 1.5, b = 1.76 a = 2, b = 1.69

QL W̄ n W̄ n W̄ n W̄ n W̄ n
< 0.05 0.061 229744 0.061 229677 0.062 229605 0.062 229209 0.062 229178
∈ (0.05, 0.1) 0.065 174689 0.065 174084 0.065 173847 0.065 173873 0.065 173615
∈ (0.1, 0.2) 0.076 161901 0.076 162291 0.076 162288 0.076 162522 0.076 162740
∈ (0.2, 0.3) 0.110 27058 0.110 27372 0.109 27741 0.109 27860 0.109 27882
∈ (0.3, 0.4) 0.148 3289 0.150 3266 0.153 3178 0.151 3200 0.149 3211
∈ (0.4, 0.5) 0.189 468 0.189 476 0.185 496 0.191 497 0.189 520
> 0.5 0.222 99 0.248 82 0.223 93 0.243 87 0.195 102

θ(w) = aw + b

a = 0, b = 1 a = 0.5, b = 0.91 a = 1, b = 0.82 a = 1.5, b = 0.73 a = 2, b = 0.64

QL W̄ n W̄ n W̄ n W̄ n W̄ n
< 0.05 0.061 229744 0.061 229584 0.062 229455 0.062 228769 0.062 227500
∈ (0.05, 0.1) 0.065 174689 0.065 174141 0.065 173730 0.065 173868 0.065 174723
∈ (0.1, 0.2) 0.076 161901 0.076 162320 0.076 162495 0.076 162762 0.077 162733
∈ (0.2, 0.3) 0.110 27058 0.110 27396 0.109 27798 0.109 27991 0.110 28401
∈ (0.3, 0.4) 0.148 3289 0.151 3251 0.152 3190 0.150 3214 0.151 3248
∈ (0.4, 0.5) 0.189 468 0.190 472 0.186 488 0.192 545 0.190 538
> 0.5 0.222 99 0.244 84 0.225 92 0.213 99 0.191 105

θ(w) = b+ exp(aw)

a = 0, b = 0 a = 0.5, b = −0.1 a = 1, b = −0.2 a = 1.5, b = −0.31 a = 2, b = −0.44

QL W̄ n W̄ n W̄ n W̄ n W̄ n
< 0.05 0.061 229744 0.061 229713 0.062 229083 0.062 227435 0.063 226054
∈ (0.05, 0.1) 0.065 174689 0.065 173941 0.065 173717 0.065 174622 0.065 173919
∈ (0.1, 0.2) 0.076 161901 0.076 162326 0.076 162821 0.077 162927 0.077 164029
∈ (0.2, 0.3) 0.110 27058 0.109 27488 0.109 27847 0.109 28385 0.110 29311
∈ (0.3, 0.4) 0.148 3289 0.153 3221 0.152 3192 0.150 3227 0.150 3284
∈ (0.4, 0.5) 0.189 468 0.188 475 0.191 498 0.189 544 0.189 542
> 0.5 0.222 99 0.244 84 0.233 90 0.186 108 0.194 109
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Table 9: N = 1000, ρ = 1.4

θ(w) = b− exp(−aw)

a = 1, b = 1.71 a = 1, b = 1.71 a = 1, b = 1.71 a = 1, b = 1.71 a = 1, b = 1.71

QL W̄ n W̄ n W̄ n W̄ n W̄ n
< 0.05 0.040 362607 0.043 271332 0.053 73663 0.038 379393 0.037 194097
∈ (0.05, 0.1) 0.047 190956 0.055 190596 0.074 80470 0.043 186382 0.050 171128
∈ (0.1, 0.2) 0.071 90816 0.088 149420 0.127 191426 0.062 70611 0.089 150210
∈ (0.2, 0.3) 0.130 16441 0.138 34443 0.192 214549 0.138 6232 0.157 43574
∈ (0.3, 0.4) 0.199 6455 0.194 12583 0.221 101173 0.190 1245 0.196 17163
∈ (0.4, 0.5) 0.244 3326 0.247 5738 0.226 29165 0.228 612 0.249 5769
> 0.5 0.367 7886 0.345 11418 0.257 7467 0.340 1558 0.321 5198

θ(w) = aw + b

a = 1, b = 0.82 a = 1, b = 0.82 a = 1, b = 0.82 a = 1, b = 0.82 a = 1, b = 0.82

QL W̄ n W̄ n W̄ n W̄ n W̄ n
< 0.05 0.041 353625 0.045 272148 0.054 73379 0.034 406024 0.036 191481
∈ (0.05, 0.1) 0.047 199054 0.055 189176 0.073 80832 0.041 173289 0.053 153417
∈ (0.1, 0.2) 0.067 95425 0.083 153882 0.127 189258 0.060 58277 0.091 165069
∈ (0.2, 0.3) 0.119 16953 0.138 33664 0.192 213979 0.131 6064 0.144 49434
∈ (0.3, 0.4) 0.191 6224 0.189 11102 0.220 101470 0.203 1431 0.197 15203
∈ (0.4, 0.5) 0.234 3426 0.220 5476 0.226 30562 0.259 670 0.242 6518
> 0.5 0.388 7670 0.330 9300 0.258 8433 0.309 1467 0.320 5883

θ(w) = b+ exp(aw)

a = 1, b = −0.4 a = 1, b = −0.4 a = 1, b = −0.4 a = 1, b = −0.4 a = 1, b = −0.4

QL W̄ n W̄ n W̄ n W̄ n W̄ n
< 0.05 0.043 345810 0.046 268335 0.054 73972 0.038 379393 0.037 194097
∈ (0.05, 0.1) 0.049 193785 0.055 197577 0.074 78759 0.043 186382 0.050 171128
∈ (0.1, 0.2) 0.066 105494 0.087 150441 0.127 189439 0.062 70611 0.089 150210
∈ (0.2, 0.3) 0.129 15089 0.140 31623 0.190 212038 0.138 6232 0.157 43574
∈ (0.3, 0.4) 0.190 6027 0.179 11460 0.218 101839 0.190 1245 0.196 17163
∈ (0.4, 0.5) 0.252 2932 0.220 5309 0.227 32061 0.228 612 0.249 5769
> 0.5 0.376 7031 0.342 9508 0.259 9805 0.340 1558 0.321 5198
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