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In observable priority service systems, e.g., the emergency department of a hospital, customers are typically

left to infer their own information about their queue positions in the waiting room. Because such infer-

ences are likely inaccurate, the system manager may choose to provide accurate information, e.g., through

Smartphone Apps. In this paper, we examine the impact of providing (queue position) information on key

operational performance measures of the system. We consider a two-class, multi-server priority queue with

time-varying arrivals and state-dependent abandonment rates, and compare two levels of information: no

information (where abandonment rates are driven by customers’ class-dependent perceptions of their queue

positions) and full information (where abandonment rates are driven by customers’ true queue positions).

For each level, we derive time-varying fluid approximations of the queue length process, and establish the

existence, uniqueness, and asymptotic stability of a periodic equilibrium for the fluid models. The approxi-

mations allow us to analytically compare the two information levels based on class-dependent performance

measures. The results yield new insights on (1) the interactions between information system features of

priority service and time-varying arrivals; (2) trade-offs in effects of information between priority classes and

different performance metrics; and (3) the impact of customers’ perception and system load on the effects

of information. Specifically, we find that providing accurate information may have opposing effects on the

abandonment rates of different priority classes. These effects depend on the system load, and hence in certain

cases be controlled (e.g., through staffing decision) to eliminate the trade-offs.

Key words : State-dependent abandonment; information-dependent abandonment; priority queues;

time-varying arrivals; service systems

1. Introduction

Customer abandonment is prevalent in service systems and can have a significant impact on system

performance. In most service settings, some form of information on the current “state” of the

system, or waiting time estimates, is available. This information may be communicated (and, hence,

fully controlled) by the provider in unobservable (virtual) queues. In observable service settings,

customers are left to infer their own information. Because such inferences are noisy and possibly

inaccurate, the system manager may choose to provide accurate information through technology-
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enabled solutions, e.g., Smartphone Apps. In this paper, we examine the impact of providing (queue

position) information on key operational performance measures of the system.

Our primary motivation comes from the Emergency Department (ED) of a hospital, where

patients with different medical urgency (and, hence, service priority) share a common waiting room

and typically do not receive real-time information regarding their anticipated delays, position, or

priority level. Previous (observational) empirical studies (e.g., Batt and Terwiesch 2015, Bolandifar

et al. 2019) have found that observable (time-varying) characteristics of the waiting room (number

waiting, service speed) and those of the patients (severity levels) impact their abandonment deci-

sions. This raises the question of whether abandonment rate and other system-level performance

measures of EDs can be improved by providing information, in form of queue positions or wait-

ing time predictions, to the patients. Examining the effects of providing information about queue

positions or delays through experimental or quasi-experimental studies is particularly challenging

in the complex setting of an ED. In addition to ethical and quality of care concerns, abandonment

rates are also typically small, hence requiring long experiments to obtain sufficiently large samples.

A rare example is Westphal et al. (2022) which evaluates the impact of providing operational (cur-

rent and next stage of care) and wait time information (expected remaining time in ED) through a

field-study implementation of a web-based phone application called MyED (Westphal et al. 2020).

In this paper, we propose a modeling framework to evaluate the impact of providing delay

information in observable service settings, such as the ED. Our primary goal is to gain insights

into the key trade-offs that impact the value of information, and the interaction with key system

features of priority service and time-varying arrivals, which are prevalent in the ED and other

observable service settings.

We consider a Markovian multi-server two-class queueing system with time-varying Poisson

arrivals, operating under a strict priority discipline. We model abandonment rates as state-

dependent through an increasing and concave function that maps customers’ perceived queue

positions to their abandonment rates. The perceived queue positions depend on the information

available to the customers. Specifically, our analysis compares the following two levels of informa-

tion. (1) No information: customers only observe the total queue length, but neither the priority

classes nor the positions of individual customers in the queue. In this case, we assume that cus-

tomers perceive their position to be proportional to the total queue length, where this proportion

could differ between priority classes and could depend on elapsed waiting times. (2) Full informa-

tion: customers are aware of the priority classes and customer positions, i.e., observe their true

queue position.

In the ED setting, the high- and low-priority classes in our model correspond to emergency

severity index (ESI) levels 2 and 3, and ESI levels 4 and 5, respectively, as the most urgent
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patients in ESI level 1 do not abandon, cf. Batt and Terwiesch (2015). Accordingly, the service

capacity in our model corresponds to the residual capacity available to patients in ESI levels 2 or

higher. We also note that although our primary motivation comes from observable service settings,

our models and results are relevant to virtual queues where the information is communicated to

customers through delay announcements. In this case, the no information scenario corresponds to

only providing (and updating) the total number of customers in the system, and full information

corresponds to communicating the exact customer positions in the queue.

To compare these information levels, we study a many-server fluid approximation of the system.

The fluid approximation captures the first-order impact of the information and allows for an ana-

lytical comparison of system performance with respect to equilibrium average abandonment rates

and queue lengths (congestion). In particular, our analysis yields new insights on the interactions

between information and key system features, namely priority service and time-varying arrivals.

These insights lead to important implications regarding the provision of information in observable

priority service systems with time-varying arrivals such as the ED.

1.1. Contributions and Summary of Main Results

Our main contributions and results can be summarized as follows.

1. We study a novel model of a two-class priority queue with state-dependent abandonment and

time-varying arrivals. The novelty is that the abandonment rates depend on the information level.

2. Fluid limits and equilibrium analysis. We derive fluid approximations of the transient dynam-

ics of the system under different information granularity levels and justify them through a Strong

Functional Law of Large Number (FSLLN) for the fluid-scaled queue length processes. We fur-

ther leverage an extended Lyapunov method for time-varying systems to establish the convergence

of the fluid limits to asymptotic periodic equilibria under periodic arrival rates. The approach is

general and can be used to establish the equilibrium behaviour of other time-varying queueing sys-

tems. Further, the results lead to new observations on the impact of information on the equilibrium

behavior of the system. In particular, the period of the equilibrium queue length may not be the

same as that of the arrival rate, depending on the information level.

3. Performance comparison under different levels of information. We leverage our equilibrium

results to analytically compare the first-order effects of information under progressively increasing

model complexity. To gain insights on the direct and aggregate impact of time-varying arrivals and

priority service, we start with a single-class stationary model and then introduce non-stationary

arrivals and two priority classes. Our key findings are as follows:

(i) In single-class stationary systems, no information minimizes average congestion when cus-

tomers are sufficiently pessimistic about their queue position (i.e., they assume that they are closer
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to the end of the queue), by inducing them to abandon sooner, whereas the average abandonment

rate is not impacted by the information (Proposition 2). Note that we are thinking of an ED setting

here where customers are in a shared waiting room so that it would be difficult for them to infer

the service discipline through direct observation of the queue length evolution.

(ii) Single-class non-stationary systems that alternate between under- and overloaded regimes

have the following information design trade-off between congestion and abandonment. No infor-

mation minimizes congestion but maximizes abandonment, when customers perceive that they are

closer to the end of the queue. Otherwise, providing real-time position information results in lower

congestion and higher abandonment (Propositions 3 and 4).

(iii) Two-priority stationary systems face the following information design trade-off between the

high-priority (HP) and low-priority (LP) classes. Information has the same effect on HP customers

as in the single-class case, but may have the opposite effect on LP customers (Proposition 5).

(iv) Finally, two-priority non-stationary systems are not only subject to the same trade-offs as

in simpler systems above, but also face an additional trade-off between the average abandonment of

LP and HP classes. This trade-off depends on both, the system load and customers’ perceptions of

their queue positions. In particular, in a parameter regime relevant to the ED, namely when the HP

class alternates between under- and overloaded regimes, if HP customers are sufficiently optimistic

(i.e., they perceive a low queue position) and LP customers are sufficiently pessimistic (i.e., they

perceive a high queue position), then no information minimizes HP abandonment, whereas full

information minimizes LP abandonment (Propositions 7 and 8). Therefore, providing information

on the true queue position could increase abandonment for the HP class. Consequently, effective

information design for the ED may require providing different information to different priority

levels, or adjusting system load through staffing/capacity decisions. We show that, in practically

relevant parameter regimes, the trade-off between priority classes can be eliminated by ensuring

that the HP class remains underloaded.

4. Extensions and robustness checks. Using simulation experiments, we show that our compar-

ative results and insights hold under more general mappings of the system state to customers’

perceived queue positions, as well as in stochastic systems with a moderate number of servers.

1.2. Organization of the Paper

The rest of this paper is organized as follows. In §2 we provide a review of the related literature.

§3 presents the queueing model. In §4 and §5 we present the fluid limits of the queueing model

under the different information levels and establish their convergence to periodic equilibria. In §6,

we compare the equilibrium system performance under the three levels of information granularity.

In §7 we present the results of our robustness checks. Finally, in §8 we conclude with a discussion

of managerial implications and directions for future work.
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2. Related Literature

Our work relates to three bodies of literature that we briefly discuss below: Theoretical studies

related to delay announcement or state information in service systems; queueing models with

customer abandonment; and empirical studies of customer abandonment in service systems.

1. Theoretical studies related to delay announcements or state information in service systems.

In this body, we group (theoretical) studies that focus on aspects of system information, e.g., its

accuracy, equilibrium analysis for a given information scheme, and comparison of performance

across different schemes.

(i) There is a large literature on communicating wait-time information in service systems; see

Ibrahim (2018) for a recent survey. A primary focus of this body of literature has been to pro-

vide a single announcement at the arrival epoch of the customer; see, e.g., Ibrahim et al. (2017),

Bassamboo and Ibrahim (2021). A related body of literature focuses on the impact of providing

lagged delay information, e.g., Nirenberg et al. (2018), Lakrad et al. (2022) on the performance of

the system. Armony et al. (2009) study the impact of fixed and Last-to-Enter-Service (LES) delay

announcements on customer behavior in queues with abandonment, by analyzing a fluid approx-

imation and characterizing the resulting system equilibria. In contrast, we focus on sequentially

updated delay information and evaluate the impact of providing queue position information instead.

(ii) There are also papers that study and compare the effects of different information provision

strategies on the balking behavior of rational, utility-maximizing customers, and the resulting

system performance in terms of throughput, welfare and profit (e.g., Hassin 1986, Chen and Frank

2004, Burnetas and Economou 2007, Guo and Zipkin 2007, 2008, Hassin and Roet-Green 2020).

The general takeaway of these studies is that more information may or may not be beneficial.

However, contrary to our model, these papers ignore abandonment and limit attention to stationary

single-server FIFO systems.

(iii) A related stream of work focuses on ticket queues (e.g., Xu et al. 2007, Jennings and Pender

2016, and Kuzu et al. 2019). In ticket queues, customers wait in a virtual queue but are informed

of their queue position through a numbered ticket upon arrival. Ticket queues also lead to partial

queue information, as some customers may abandon without notifying anyone, and hence render

the queue position information on the tickets inaccurate. The literature on ticket queues focuses

on understanding the impact of this inaccurate information on system performance. In contrast,

our focus is on comparing performance under different levels of information for priority queues.

(iv) We model the impact of information on abandonment behaviour through state-dependent

(individual) abandonment rates. Earlier studies have used state-dependent abandonment rates

to model and compare different delay-announcement strategies. Whitt (1999) and Jouini et al.

(2009, 2011) assume that customers react to the delay announcement by balking, but may also
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subsequently renege if they decide to join. The announcement impacts the queueing performance

through the transition rates of the corresponding birth-and-death processes. In our model, the

available information impacts the abandonment rates through a general function of the actual

state. In contrast to previous work, we consider a setting where the information (and, hence, the

abandonment rates) dynamically changes over time. In addition, we consider time-varying arrivals

that cannot be captured through simple birth-and-death processes.

2. Queueing models with customer abandonment. In this body, we group (theoretical) studies

that focus on system analysis and optimization, taking the information setting as given. Going back

to Barrer (1957), the bulk of these papers take the classical approach of modeling abandonment

through an exogenous function of the system state. More recently, there have been several papers

that endogenize customers’ abandonment behavior, i.e., the abandonment depends not only on the

system state, but also on the utility-maximizing decisions of rational, forward-looking customers.

(i) Our work is closer to the large body of literature on queueing models that capture aban-

donment through exogenous rate functions, see, e.g., Bassamboo and Randhawa (2016), Dong

and Ibrahim (2021), and Pender (2017) and the references therein. Closely related to our work

are studies that consider state-dependent (individual) abandonment rates. For instance, Whitt

(2005a,b) propose and study Markovian queueing models with state-dependent abandonment rates

to approximate performance in queueing models with general abandonment distributions. However,

they consider a single-class setting with stationary arrivals and do not examine different levels of

information as we do here.

Our study relies on a fluid approximation of the stochastic queueing system. Fluid models are

commonly used to approximate performance in queueing models with abandonment (e.g., Whitt

2006, Liu and Whitt 2011b, Dong et al. 2015, Yu et al. 2021a). We derive fluid approximations

for the transient dynamics of the system under time- and state-dependent rates using the strong

approximation framework of Mandelbaum et al. (1998). We further establish the existence and

study the periodic equilibrium of the fluid models under periodic arrivals. Fluid approximations

of the time-dependent equilibrium behaviour of queueing systems are also proposed in Heyman

and Whitt (1984) and Liu and Whitt (2011a). Perry and Whitt (2016) and Dong and Perry

(2020) also establish the existence of a periodic equilibrium for many-server queues but without

abandonment and using ad-hoc approaches. In contrast, we leverage general methods from the

literature on nonlinear dynamical systems (e.g., Khalil 2002) to establish the results.

(ii) Studies of rational abandonment assume either that customers cannot observe the queue

(e.g., Haviv and Ritov 2001, Shimkin and Mandelbaum 2004, Ata et al. 2017, Ata and Peng 2017),

or that customers have full information about the queue state (e.g. Hassin 1985, Assaf and Haviv

1990, Afèche and Sarhangian 2015, Cui et al. 2022).
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3. Empirical studies of customer abandonment in service systems. Several studies have empiri-

cally investigated the abandonment behaviour of customers in both unobservable and observable

queues.

(i) In the unobservable (virtual) setting, Akşin et al. (2017) and Yu et al. (2017) use structural

estimation models to estimate and understand the mechanism through which delay announcements

impact callers’ abandonment decisions. Yu et al. (2021b) conduct a field experiment in a call center

to examine how delay information impact reference-dependent behaviour of customers. Yu et al.

(2022) conduct a randomized field experiment in a ride sharing setting to examine the impact of

wait time information and its progress on abandonment in virtual queues.

(ii) Closer to our work are empirical studies concerned with observable or “semi-observable”

settings. This body of literature has focused on understanding the impact of the visible aspects

of the queue, i.e., queue length, position, and service speed on the abandonment behaviour of

customers; see Aksin et al. (2022) and the references therein. The majority of the studies are

concerned with single class queues, with the exception of Batt and Terwiesch (2015) and Bolandifar

et al. (2019) that are concerned with abandonment behaviour of patients in the multiclass setting of

EDs. Queue length has been found to be a primary measure with an increasing effect on customer

abandonment, even after controlling for wait. This has been observed in retail (deli) queue (Lu

et al. 2013) as well as EDs (Batt and Terwiesch 2015, Bolandifar et al. 2019). Buell (2021) finds

evidence from grocery queues that queue position - relative to the total length of the queue - also

matters. Previous studies, e.g., Janakiraman et al. (2011), have suggested that customer utility is

the combination of disutility from remaining wait, and utility from making progress. In addition

to queue length, the service speed has also been observed to impact customer behaviour. Aksin

et al. (2022) find, using lab experiments, that the sequence of observed service times impact the

abandonment behaviour. Batt and Terwiesch (2015) find evidence from the semi-observable setting

of an ED that, in addition to queue length and service speed, patients also respond differently to

arrivals of patients with higher severity (and hence priority). Bolandifar et al. (2019) find evidence

that patients of different severity levels have heterogeneous abandonment responses to observable

features of the queue.

In this work, we do not directly model individual customer behaviours. Instead, we model aban-

donment through a general state-dependent rate function that maps each customer’s perception of

her position to an abandonment rate. The resulting abandonment behaviour is, however, consistent

with the empirical findings on customer abandonment discussed above. In particular, we assume

the abandonment rate function is concave and increasing in the queue length. Hence, customers

abandon faster from longer queues and making progress at the end of the queue results in a smaller

reduction in abandonment probability than for customers who are closer to the head of the queue.
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Also, observing faster service times helps customers progress towards lower states faster, and hence

reduce their abandonment probabilities. Finally, in the no information setting, we assume that

customers are not aware of the priority levels of other customers, but different priority classes

may have heterogeneous beliefs about their queue positions. Our modelling framework allows us to

derive new insights on the impact of system dynamics - in particular priority discipline and non-

stationary arrivals - on abandonment, queue length and waiting time metrics. These features are

prevalent in observable service systems such as EDs. As such, our results are relevant for design of

information provision technology (similar to Westphal et al. 2020) and design of future field studies

such as Westphal et al. (2022).

3. Model

We consider a multi-server queueing system with s identical servers and two classes of customers

indexed by k= 1,2. Class 1 customers have preemptive priority over class 2 customers; we refer to

class 1 as HP (high-priority) and class 2 as LP (low-priority). Customers in the same priority class

are served on a First-Come, First-Served (FCFS) basis.

Arrivals to class k follow a Poisson process with rate λk(t), where λk(t) is assumed to be bounded

and continuous. We assume that the arrival rate is a periodic function, i.e., λk(t) = λk(t+ dk), for

t ≥ 0, where dk > 0, dk ∈ Q is the fundamental (i.e., smallest) period of the arrival rate function

for class k. We also examine the special case with stationary arrivals, i.e., with λk(t) = λk for

all t. Note that, in the case with stationary arrivals, the fundamental period dk does not exist

since λk(t) = λk(t+ dk) for arbitrarily small dk > 0. Service times are assumed to be exponentially

distributed with class-dependent rates µk.

Customers waiting for service abandon the system once their patience expires. A key feature of

our model is that a customer’s patience varies with the system state and depends on the information

design. Under information design I, the patience time (time to abandonment) of a waiting class k

customer in position l of her class (i.e., with the l-th earliest arrival time among class k customers)

is exponentially distributed with state-dependent rate θ(qIkl(t)/s), where qIkl(t) is the customer’s

perceived queue position at time t, and θ(·) is a function that maps her perceived position to her

abandonment rate. Note that the abandonment rate is determined by applying θ(·) to the scaled

perceived queue position, i.e., after dividing it by the number of servers s. Intuitively, scaling the

queue position by s captures the effect of system size on customers’ abandonment behaviour: as

the number of servers (and the system size) increases, we expect the impact of perceiving larger

queues to decrease proportionally. We make the following assumptions on θ(·).

Assumption 1. The abandonment rate function θ(·) is continuous, strictly increasing, concave,

and bounded, i.e., θ(x)≤M for all x≥ 0 and some finite constant M > 0.
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It is natural to assume that θ(·) increases in a customer’s perceived queue position. The assumption

that θ(·) is concave reflects the notion that the marginal increase in a customer’s abandonment

rate is smaller the smaller the relative increase in her perceived queue position. For example, a

customer’s abandonment rate increases more if her perceived queue position increases from 10 to

11 (10% relative increase) than from 100 to 101 (1% relative increase).

Customers’ perceived queue position depends on the information that they receive. Under full

information (F ), they are informed about their real-time queue position. Under no information

(N), customers are only informed about the real-time total number in the system. Denote by

{XI
k(t) : t ≥ 0} the process that keeps track of the number of class k ∈ {1,2} customers in the

system under information design I ∈ {F,N}.

1. Full information: Customers observe the priority classes of all customers as well as their

queue positions. Each waiting customer’s perceived queue position matches her exact position, i.e.,

qFkl(t) = (
∑k−1

i=1 X
F
i (t) + l− s)+ for l > (s−

∑k−1

i=1 X
F
i (t))+.

2. No information: Customers only observe the total queue length of the system. A class k cus-

tomer’s perceived queue position is determined by the current queue length and a class-dependent

relative position fraction βk ∈ (0,1], where βk captures how the customer computes their per-

ceived queue position. Specifically, a class βk waiting customer’s queueing position is given by:

qNkl(t) = βk(X
N
1 (t) +XN

2 (t)− s)+ for l > (s−
∑k−1

i=1 X
N
i (t))+.

Intuitively, βk reflects a class-level average belief about customers’ queue positions during their

wait in the absence of queue-position information. Assuming unequal βk for different priority classes

allows us to capture heterogeneity in abandonment responses between priority class. For instance,

β1 < β2 can be interpreted as high-priority customers having a more optimistic belief about their

queue positions. We refer to the no information model with static position fractions as the βk

model. In reality, this belief could evolve dynamically as a function of a customer’s elapsed waiting

time. In Section 7.1 we show that the βk model serves as an accurate approximation for the model

with waiting-time-dependent position fraction.

We also assume the same θ(·) function for all information levels for analytical tractability and

so that we can isolate the interactions between information granularity and system characteristics,

e.g., non-stationary arrival rates and priority classes; see also the discussion in Section 8.3.

4. Fluid Approximation

In this section, we obtain a fluid approximation of the queue length process with or without queue

position information. To this end, we consider a sequence of queueing systems described in Section

3, indexed by n. The arrival rate and number of servers scale up uniformly in n whereas service

rates and the function θ(·) remain unscaled.
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Let sn and λnk(t) denote, respectively, the number of servers and arrival rates in the nth system.

Denote by {XF,n(t) := (XF,n
1 (t),XF,n

2 (t)) : t≥ 0} and {XN,n(t,β) := (XN,n
1 (t,β),XN,n

2 (t,β)) : t≥ 0}

the processes that keep track of the numbers of customers of both classes in the nth system under

information design F and N , respectively, where β := (β1, β2). Let Ak ≡ {Ak(t) : t≥ 0}, Sk ≡ {Sk(t) :

t≥ 0}, and Nk ≡ {Nk(t) : t≥ 0} be independent unit-rate Poisson processes corresponding to the

arrival, service, and abandonment processes, respectively. Then, under full information, the sample

path of XF,n(t) is uniquely determined by the initial state XF,n(0) and the following equations:

XF,n
1 (t) =XF,n

1 (0) +A1

(∫ t

0

λn1 (u)du

)
−S1

(
µ1

∫ t

0

(XF,n
1 (u)∧ sn)du

)
−N1

(∫ t

0

AF,n1 (XF,n(u))du

)
, (1)

XF,n
2 (t) =XF,n

2 (0) +A2

(∫ t

0

λn2 (u)du

)
−S2

(
µ2

∫ t

0

(XF,n
2 (u)∧ (sn−XF,n

1 (u))+)du

)
−N2

(∫ t

0

AF,n2 (XF,n(u))du

)
, (2)

where AF,nk (XF,n(u)) denotes the aggregate class k abandonment rate at time u under full infor-

mation, defined as,

AF,n1 (XF,n(u)) :=

(X
F,n
1 (u)−sn)+∑

i=1

θ

(
i

sn

)
, (3)

AF,n2 (XF,n(u)) :=

(X
F,n
1 (u)+X

F,n
2 (u)−sn)+∑

i=(X
F,n
1 (u)−sn)++1

θ

(
i

sn

)
. (4)

Similarly, we obtain the sample path of XN,n(t,β) with initial state XN,n(0,β) and equations

(1)–(2) with XF,n(t) and AF,nk (XF,n(u) replaced by XN,n(t,β) and AN,nk (XN,n(u,β)), where

AN,n1 (XN,n(u,β),β) := θ

(
β1(XN,n

1 (u,β) +XN,n
2 (u,β)− sn)+

sn

)
(XN,n

1 (u,β)− sn)+, (5)

AN,n2 (XN,n(u,β),β) := θ

(
β2(XN,n

1 (u,β) +XN,n
2 (u,β)− sn)+

sn

)(
XN,n

2 (u,β)− (sn−XN,n
1 (u,β))+

)+
.

(6)

For simplicity, we suppress β in the expressions of AN,nk (XN,n(t,β),β) and XN,n(t,β) in the

remainder of Section 4 and in Section 5 By equations (1) and (2), in the nth system, the number of

class k customers at time t, XI,n
k (t), is equal to the initial number-in-system, plus the cumulative

number of arrivals, minus the cumulative number of service completions and abandonments until

time t. In turn, the aggregate class k service rate at time t equals the individual class k service

rate, multiplied by the minimum of the number of available servers for class k customers and the

number of class k customers in system.
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By equations (3)–(6), the aggregate class k abandonment rate at time t under information level

I, AI,nk (XI,n(t)), equals the sum of the individual abandonment rates of class k customers in queue

at time t. That is, AI,nk (XI,n(u)) =
∑X

I,n
k

(t)

l=1 θ(
qIkl(t)

sn
). Importantly, note that different information

designs imply different aggregate abandonment rates for the same system state, XI,n(u).

The following result establishes that the fluid-scaled process XI,n(t)/n (for both information

designs) converges to a unique deterministic fluid limit as n→∞. That is, the fluid limits are good

approximations of the corresponding stochastic sample paths when the system is sufficiently large.

Theorem 1. Assume that as n→∞, sn/n is increasing and sn/n→ s, λnk(t)/n→ λk(t) <∞

uniformly, and XI,n
k (0)/n→ xIk(0) almost surely for k= 1,2, I ∈ {F,N}. Under information level I,

as n→∞ the scaled process {XI,n(t)/n : t≥ 0} converges almost surely to {xI(t) := (xI1(t), xI2(t)) :

t≥ 0} uniformly on compact sets, where {xI(t) : t≥ 0} is the unique solution of the following system

of ordinary differential equations starting from initial condition xI(0):

ẋI1(t) = λ1(t)−µ1(xI1(t)∧ s)−AI1(xI(t)), (7)

ẋI2(t) = λ2(t)−µ2

(
(s−xI1(t))+ ∧xI2(t)

)
−AI2(xI(t)), (8)

where,

AI1(x(t)) =


∫ (x1(t)−s)+

0
θ (u/s)du, if I = F,

θ
(
β1(x1(t)+x2(t)−s)+

s

)
(x1(t)− s)+, if I =N ;

(9)

AI2(x(t)) =


∫ (x1(t)+x2(t)−s)+

(x1(t)−s)+ θ (u/s)du, if I = F,

θ
(
β2(x1(t)+x2(t)−s)+

s

)
(x2(t)− (s−x1(t))+)+, if I =N.

(10)

Note that for simplicity we suppress the argument β in xN1 (t,β) and ANk (x(t),β) in Sections 4

and 5. The proof of Theorem 1 is provided in Appendix A. The proof is based on verifying the

conditions of Theorem 2.2 of Mandelbaum et al. (1998) which establishes a Functional Strong Law

of Large Numbers (FSLLN) for a general family of queueing processes. In our model, the main

difficulty is to establish the Lipschitz continuity of the abandonment rate functions. Furthermore,

in the case of full information, the abandonment rates are different for individual customers in the

same priority class. This introduces additional technical difficulties when showing the convergence

of the summations for the system abandonment rate in (3)–(6) to the integrals in (9) and (10).

The assumption that sn/n is increasing is made to facilitate this step of the proof.

5. Equilibrium Analysis

In this section, we study the long-run behavior of the fluid models developed in Section 4.
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Definition 1. A solution x̃I := {x̃I(t) : t ≥ 0} to the system of ODEs (7)–(8) under a fixed

information level I is a periodic equilibrium if there exists a vector (p1, p2) ∈ R2
+ such that

x̃Ik(t+ pk) = x̃Ik(t) for all t≥ 0 and k = 1,2. The smallest (p1, p2) pair (if it exists) is referred to as

the fundamental period of the equilibrium.

Remark 1. Note that, when x̃Ik(t+pk) = x̃Ik(t) holds for arbitrarily small pk, i.e., x̃Ik(t) = x̃Ik is a

constant for some k ∈ {1,2}, the fundamental period of the equilibrium does not exist. When x̃Ik(t)

is a constant for both k= 1,2, then the periodic equilibrium reduces to an equilibrium point.

Our first result establishes the existence of a unique periodic equilibrium under the assumption

that the service rates for the two classes are the same. Recall that λk(t) has fundamental period dk

and denote by d := lcm(d1, d2) the least common multiple of d1, d2 (such d must exist since dk ∈Q).

Then, d is a period of the total arrival rate of the system, i.e., Λ(t) := λ1(t) + λ2(t), although it

may not be its fundamental period. In particular, the fundamental period of Λ(t) does not exist

when Λ(t) is static (see case (ii) of Example 1), and can be either equal to or smaller than d.

Proposition 1. Assume that µ1 = µ2 = µ and β1 = β2 = β. Under any information level I ∈

{F,N}, (7) and (8) have a unique periodic equilibrium x̃I with period (pI1, p
I
2), where (pF1 , p

F
2 ) =

(d1, d) and (pN1 , p
N
2 ) = (d, d).

We prove Proposition 1 by establishing the existence of a fixed point of the Poincaré map (see

Definition 4) with respect to the system of two-dimensional ODEs (7)–(8). The approach is general

and can be adapted to establish the existence and uniqueness of a periodic equilibrium for other

time-varying queueing models. Since the monotonicity of Poincaré map (see Proposition 9) only

applies to one-dimensional ODEs, we assume equal service rates to convert our two-dimensional

ODE to a one-dimensional one in terms of the total queue length x1 + x2 for x = (x1, x2) ∈ R2.

The assumption of equal service rates and class-independent β is however not necessary for the

existence of the equilibrium. Numerical experiments suggest that Proposition 1 continues to hold if

µ1 6= µ2 and β1 6= β2 (see Example 1). Further, we note that under stationary arrivals, the periodic

equilibrium reduces to a single equilibrium point x̃I ∈ R2
+. In this case, under each information

level I, Proposition 1 implies that there exists a unique equilibrium point x̃I .

By (7)–(10), the HP number-in-system process under full information solely depends on the HP

arrival rate, λ1(t), whereas the HP and LP number-in-system processes under no information and

the LP number-in-system process under full information depend on the arrival rates of both classes.

As a result, pF1 is determined by the period of the HP arrival rate, d1, while pN1 , p
I
2, for I ∈ {F,N},

are determined by the period of the total arrival rate, d.

Note that (pI1, p
I
2) is a period, but not necessarily the fundamental period of the periodic equi-

librium x̃I . However, numerically we observe instances where (pI1, p
I
2) is the fundamental period,



13

(a) HP number-in-system, pF1 = 10, pN1 = 30. (b) LP number-in-system, pF2 = pN2 = 30.

Figure 1 Trajectories of number-in-system processes in periodic equilibrium (µ1 = 1, µ2 = 2, β1 = 0.8, β2 = 0.9

, s= 20, θ(x) = 4.2− 4e−x, λ1(t) = 20(1− 0.8 sin(πt/5)), λ2(t) = 20(1− 0.8 sin(πt/3))).

which implies that the period of the equilibrium could indeed depend on the information level.

That is, information could have a first-order impact on the dynamics of the system by changing the

period of its equilibrium. This is in contrast with other examples of fluid models in the literature,

where the equilibria of the trajectories coincide with that of the arrival rate (e.g., Heyman and

Whitt 1984, Dong and Perry 2020). We illustrate this numerically in the following example.

Example 1. Consider the system with s = 20, µ1 = 1, µ2 = 2, β1 = 0.8, β2 = 0.9, θ(x) = 4.2−
4e−x. In this case, µ1 <µ2, β1 <β2, and θ(0) = 0.2<µ2. Consider the following two sets of sinusoidal

arrival rates: (i) λ1(t) = 20(1− 0.8 sin(πt/5)), λ2(t) = 20(1− 0.8 sin(πt/3)); and (ii) λ1(t) = 20(1−
0.8 sin(πt/12)), λ2(t) = 20(1 + 0.8 sin(πt/12)). For each of cases (i) and (ii), the trajectories of

number-in-system converges to a periodic equilibrium (x̃I1, x̃
I
2) for each information level I. In

particular,

(i) If λ1(t) = 20(1− 0.8 sin(πt/5)) and λ2(t) = 20(1− 0.8 sin(πt/3)). Then (d1, d2) = (10,6) and

d= 30, and the periodic equilibrium (x̃I1, x̃
I
2) has a fundamental period (pI1, p

I
2) = (30,30), for I =N ,

and (pI1, p
I
2) = (10,30), for I = F , as shown in Figure 1. This illustrates that the fundamental period

of the equilibrium can depend on the information design.

(ii) If λ1(t) = 20(1− 0.8 sin(πt/12)) and λ2(t) = 20(1 + 0.8 sin(πt/12)). Then d1 = d2 = d = 24,

and the periodic equilibrium (x̃I1, x̃
I
2) has a fundamental period (pI1, p

I
2) = (24,24) for I ∈ {F,N},

as shown in Figure 2. Note that, in this case, the total arrival rate Λ(t) = 40 is a constant. This

illustrates that the fundamental period of the equilibrium may not coincide with the period of the

total arrival process.

Next, we investigate whether the fluid model is asymptotically periodic, i.e., whether starting with

any initial condition the trajectories converge to the periodic equilibrium x̃I as t→∞. To this end,

we examine the stability of the periodic equilibrium. Let xI(t) be the unique solution to the system
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(a) HP number-in-system, pI1 = 24. (b) LP number-in-system, pI2 = 24.

Figure 2 Trajectories of number-in-system processes in periodic equilibrium (µ1 = 1, µ2 = 2, s= 20,

β1 = 0.8, β2 = 0.9

, θ(x) = 4.2− 4e−x, λ1(t) = 20(1 + 0.8 sin(πt/12)), λ2(t) = 20(1− 0.8 sin(πt/12))).

of ODEs (7)–(8) under information level I with initial condition xI(0). Denote by f I1 (t, xI(t)) and

f I2 (t, xI(t)) the RHS of equations (7) and (8). That is, f Ik (t, xI(t)) denotes the net flow rate of class

k customers under information level I, at time t and state xI(t). Let yIk(t) := xIk(t)− x̃Ik(t) denotes

the deviation of the trajectory of the number-in-system process xIk(t) from the periodic equilibrium

x̃Ik(t), for k= 1,2, and I ∈ {F,N}. Consider the following system:

ẏI1(t) = f I1 (t, y+ x̃I)− f I1 (t, x̃I) =: g̃I1(t, y), (11)

ẏI2(t) = f I2 (t, y+ x̃I)− f I2 (t, x̃I) =: g̃I2(t, y). (12)

Note that although λk(t) in f Ik (t, y + x̃I) and f Ik (t, x̃I) cancel out, the system (11)–(12) is not

time-invariant since gIk depends on the the time-varying trajectory x̃I(t). Moreover, the solution of

(7)–(8) depends on the initial state via λ(0).

Definition 2. (0,0) is an equilibrium point of ẏ= g(t, y) if g(t,0) = 0, for t≥ 0.

Observe that y= (0,0) is an equilibrium point for system (11)–(12) since g̃I1(t,0) = 0 and g̃I2(t,0) =

0. The following definition formalizes the notion of stability for time-varying trajectories.

Definition 3. Let g(t, y) be a Lipschitz function defined on R+ × R2, and g(t,0) = 0. The

equilibrium point y = (0,0) of ẏ = g(t, y) is globally uniformly asymptotically stable if for

any initial condition y(0), limt→∞ |y(t)|= 0, where | · | is the standard Euclidean norm.

That is, if the origin is a globally asymptotically stable equilibrium point of a system, then a

trajectory starting from an arbitrary point converges to the origin as t tends to infinity.

Theorem 2. Assume that θ(0) > 0, µ1 = µ2 = µ, and β1 = β2 = β. Then (y1, y2) = (0,0) is

a globally uniformly asymptotically stable equilibrium for (11)–(12) under each information level

I ∈ {F,N}.
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Theorem 2 implies that, under any of the information levels, the corresponding fluid model

converges to its periodic equilibrium as t→∞. In the case of stationary arrivals, since the periodic

equilibrium reduces to a single equilibrium point x̃I ∈R2
+, the theorem implies that starting from

any initial condition, the trajectories converge to x̃I as t→∞.

The proof of Theorem 2 relies on an extended Lyapunov method (see Theorem 6 in Appendix

B.3). Lyapunov methods are commonly used to prove the asymptotic stability of stationary systems,

where one needs to find a positive definite Lyapunov function V (y) for trajectory y ∈ Rn with a

negative definite derivative V̇ (y). For time-varying systems, the stability of the equilibrium point,

in general, depends on (the initial) time. Therefore, one needs to find Lyapunov function candidates

V (t, y) on R+×Rn. This requires satisfying more strict conditions for the positive definiteness of

V (t, y) to hold and the natural candidates typically used for stationary systems in the literature

fail to satisfy the conditions. Therefore, to facilitate the proof, we assume positive abandonment

rates (to bound V̇ (t, y)), equal service rates and class-independent β (to bound or cancel out the

cross-product terms in V̇ (t, y)). Nevertheless, we find numerically that these assumptions are not

necessary for the stability of the equilibrium (see Example 1).

Remark 2. To prove Proposition 1 and Theorem 2 we introduce and apply general results from

the literature on nonlinear dynamical systems. As such, the methods we use here can be adapted

to examine the long-run behaviour of other time-varying queueing models as well.

6. Performance Comparisons

In this section, we study how information impacts the system’s equilibrium performance measures,

namely, the average number of customers in the system and the average abandonment rate.

6.1. Overview of Main Results and Analysis Roadmap

Our key findings focus on non-stationary two-priority systems with alternating under-/overload.

Figure 3 provides a visual summary of these findings:

1. Trade-off between HP number-in-system and abandonment rate: Compared to full information

(F), no information (N) yields a larger number-in-system but a smaller abandonment rate1, if β1

is below some threshold, and vice versa for larger β1; see Figures 3(a) and 3(d). These results also

hold for customers in single-class systems.

2. Trade-off or alignment between LP number-in-system and abandonment rate: For LP cus-

tomers, information design involves a similar trade-off between queueing and abandonment for

some β ranges, whereas no information minimizes both, number-in-system and abandonment, if

HP and LP customers are sufficiently pessimistic, e.g., β1 ' 0.4, β2 ' 0.6; see Figures 3(b) and 3(e).

1 Under stationary demand, the abandonment rate is invariant to the information design.
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Average Number-In-System

(a) HP (b) LP (c) HP and LP

Average Abandonment Rate

(d) HP (e) LP (f) HP and LP

Figure 3 Non-stationary two-priority system: Ranking of equilibrium performance metrics under information

regimes N and F, as function of β

µ1 = µ2 = 1, s= 100, ρ1 = 0.9, ρ2 = 0.5, λk(t) = sρk(1− 0.5 sin (πt/12)), θ(x) = 2− e−x.

3. Trade-offs between HP and LP performance. Information may have consistent or opposite

effects on the number-in-system (Figure 3(d)) and the abandonment rate (Figure 3(f)) of the HP

and LP classes. Information has consistent performance effects for β in the blue and yellow areas,

but is subject to trade-offs for β in the red and green areas.

Deriving and explaining these comparison results for a two-class system with non-stationary

arrival rates poses significant challenges, particularly in the most practically relevant case when

the HP load alternates between over- and under-loaded. Therefore, to highlight the individual and

collective impact of prioritization and time-varying arrivals on the effects of information provision,

we develop and present these results in the following sequence: In Section 6.2, we summarize

preliminaries. In Section 6.3, we start with the single-class model with stationary arrivals. In Section

6.4, we study the impact of non-stationary arrivals for a single customer class. In Section 6.5, we

study the impact of priority service by considering two priority classes with stationary arrival rates.

In Section 6.6, we consider both time-varying arrivals and two priority classes. Figure 4 shows this

analytical roadmap for Sections 6.3-6.6 and the results and trade-offs we identify along the way.

In Section 8.1 we recap these results; in Section 8.2 we highlight some managerial implications.
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§6.3 Single-class stationary

Q
N minimizes at high β;

F minimizes otherwise.

A invariant

§6.4 Single-class non-stationary

Q
N minimizes at high β;

F minimizes otherwise.

A
F minimizes at high β;

N minimizes otherwise.

§6.5 Two-class stationary

HP LP

Q N minimizes
at high β1;
F minimizes
otherwise.

N minimizes
at high β2;
F minimizes
otherwise.

A invariant N invariant

§6.6 Two-class non-stationary

HP LP

Q N minimizes
at high β1;
F minimizes
otherwise.

N minimizes at
high β2; F mini-
mizes otherwise.

A F minimizes
at high β1;
N minimizes
otherwise.

F minimizes at
low β1 and high
β2; N minimizes
otherwise.

N or F minimizes
both metrics Trade-off between

queue length and
abandonment

Trade-off between
priority classes on

queue length

Trade-off between
priority classes on

abandonment

Non-stationary

Arrivals

Non-stationary

Arrivals

Priority
Classes

Priority
Classes

Figure 4 Analytical roadmap for Sections 6.3-6.6 and summary of performance comparisons under no (N)

versus full (F) information (Q = average number-in-system, A = average abandonment rate).

6.2. Preliminaries

Recall that x̃I denotes the periodic equilibrium number-in-system process under information level

I. Let x̄Ik denote the time-average number-in-system and ĀIk the time-average system abandonment

rate. Under stationary arrivals, the process x̃I is constant over time so that x̄Ik = x̃Ik and ĀIk =

AIk(x̄
I
k). Under non-stationary arrivals, Proposition 1 and the definition of d imply that d is a period

of x̃Ik, for k= 1,2, so that x̄Ik = 1
d

∫ d
0
x̃Ik(t)dt and ĀIk = 1

d

∫ d
0
AIk(x̃

I
k(t))dt. Let ρk(t) := λk(t)/sµk be the

traffic intensity (load) of class k customers at time t, and let ρk := 1
d

∫ d
0
ρk(t)dt, ρk := mint≥0 ρk(t),

and ρ̄k := maxt≥0 ρk(t) be the average, minimum, and maximum class k load, respectively.

To develop the results, we express the time-average system abandonment rate, ĀIk, in two ways.

First, we write ĀIk as the difference between the time averages of the system arrival rate and the

system service rate during an interval of length d. This holds because by Proposition 1, the in- and

outflows are balanced during such an interval, so (7) and (8) yield the following equations:

ĀI1 =
1

d

∫ d

0

λ1(t)dt− µ1

d

∫ d

0

(x̃I1(t)∧ s)dt for I ∈ {F,N}, (13)

ĀI2 =
1

d

∫ d

0

λ2(t)dt− µ2

d

∫ d

0

(
(s− x̃I1(t))+ ∧ x̃I2(t)

)
dt for I ∈ {F,N}. (14)

Second, we write ĀIk by averaging the sum of individual customers’ abandonment rates, given

by (9) and (10), over a time interval of length d. These individual customer abandonment rates

depend on the system’s information level. This approach yields the following equations:

ĀN1 :=
1

d

∫ d

0

θ

(
β1

(x̃N1 (t) + x̃N2 (t)− s)+

s

)
(x̃N1 (t)− s)+dt, (15)
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ĀF1 :=
1

d

∫ d

0

∫ (x̃F1 (t)−s)+

0

θ (u/s)dudt, (16)

ĀN2 :=
1

d

∫ d

0

θ

(
β2

(x̃N1 (t) + x̃N2 (t)− s)+

s

)
(x̃N2 (t)− (s− x̃N1 (t))+)+dt, (17)

ĀF2 :=
1

d

∫ d

0

∫ (x̃F1 (t)+x̃F2 (t)−s)+

(x̃F1 (t)−s)+
θ (u/s)dudt. (18)

In what follows, we refer to equations (13)-(18) to help discuss the results and the underlying

intuition. Further, recall that we omitted β from the notations for systems with no information in

the preceding sections. Since the comparison results between the no and full information models

depend on β, we will use complete notations with β as a dependent variable for results in the

remaining section. That is, we replace x̃Nk (t), x̄Nk , and ĀNk with x̃Nk (t,β), x̄Nk (β), and ĀNk (β),

respectively, when presenting the comparison results in Sections 6.3–6.6.

6.3. Single Class with Stationary Arrivals

In this section, we consider a single class of customers with stationary arrivals. We omit the

customer class subscript for simplicity. Under stationary arrivals, the equilibrium is constant over

time, so that (13), (15) and (16) reduce, respectively, to:

ĀI = λ−µ(x̄I ∧ s), for I ∈ {F,N}, (19)

ĀN := θ

(
β

(x̄N − s)+

s

)
(x̄N − s)+, (20)

ĀF :=

∫ (x̄F−s)+

0

θ (u/s)du. (21)

These equations imply the following rankings of performance measures (we omit a formal proof).

Proposition 2. For single-class systems with stationary arrivals, the equilibrium average

number-in-system and abandonment rate under no (N) and full (F) information compare as follows:

1. If ρ≤ 1, then x̄N(β) = x̄F = sρ and ĀN(β) = ĀF = 0.

2. If ρ > 1, then s < x̄N(β), s < x̄F and ĀN(β) = ĀF = λ− sµ. There is a threshold β∗ ∈ (0,1)

such that x̄N(β∗) = x̄F and:

(a) If β ∈ [0, β∗), then x̄F < x̄N(β).

(b) If β ∈ (β∗,1], then x̄N(β)< x̄F .

Proposition 2.2 highlights how the effect of information in overloaded systems (ρ > 1) depends on

the position factor β. (Information has no effect in underloaded systems, as there is no queue.)

There exists a (load-dependent) threshold β∗ such that no information (N) yields a longer queue

than full information (F ) if β < β∗, and vice versa if β > β∗. Intuitively, this holds as a result of

the following three factors: (i) The equilibrium abandonment rate is invariant to the information
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under stationary arrivals, see (19); (ii) the system abandonment rate under both information

regimes increases in the queue length; and (iii) for any fixed queue length, the parameter β in

the no-information regime has the following effects on abandonment: the individual and system

abandonment rates are continuously increasing in β, lower compared to full information (F) for

β = 0, and higher compared to F for β = 1; see (20) and (21). Therefore, for β below (above) the

threshold β∗, no information yields a longer (shorter) queue of customers who abandon at a slower

(faster) average rate, compared to customers under full information.

In sum, in a stationary overloaded single-class system, the goal of effective information design is

to shorten the queue by inducing customers to abandon sooner. In this sense, by Proposition 2.2

no information is less effective than full information for small β, and more effective for large β.

6.4. Single Class with Non-Stationary Periodic Arrivals

We turn to the effects of non-stationary arrivals in single-class systems. Compared to the stationary

case, time-varying arrivals give rise to one more load regime, whereby the system alternates between

over- and underloaded, that is, ρ< 1< ρ̄. This load regime is prevalent in practice and yields a key

difference, compared to the stationary setting: a trade-off between queueing and abandonment, as

shown below in Propositions 3 and 4.

Proposition 3 establishes the following ranking of the average equilibrium number-in-system.

Proposition 3. For single-class systems with non-stationary periodic arrivals, the equilibrium

average number-in-system under no (N) and full (F) information compare as follows:

1. If ρ̄≤ 1, then x̄N = x̄F .

2. If ρ̄ > 1 and max
t≥0

x̃N(t,0)> s, there is a threshold beta∗q ∈ (0,0.5) such that x̄N(β∗q ) = x̄F and:

(a) If β ∈ [0, β∗q ), then x̄F < x̄N(β).

(b) If β ∈ (β∗q ,1], then x̄N(β)< x̄F .

Proposition 3 builds on stronger results that rank the equilibrium number-in-system processes

x̃N(t, β) and x̃F (t) for all t (see Lemma 4 in Appendix C.3). Proposition 3 shows that the corre-

sponding ranking results for stationary systems (Proposition 2) are robust and naturally generalize

to the non-stationary case, specifically in the important case where the system is overloaded at

least some of the time (ρ̄ > 1, Part 2): Compared to full information, no information increases the

average equilibrium number-in-system for small β, and weakly reduces this metric for large β.

Proposition 3.2 also adds an insight that is specific to non-stationary systems: The information

design impacts the average equilibrium number-in-system even if the system is underloaded on

average (i.e., ρ < 1), so long as a queue forms some of the time under no information with β = 0

(i.e., if maxt≥0 x̃
N(t,0)> s).

Proposition 4 establishes the following ranking of the average system abandonment rates.
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Proposition 4. For single-class systems with non-stationary periodic arrivals, the equilibrium

average abandonment rates under no (N) and full (F) information compare as follows:

1. If ρ̄≤ 1, or ρ≥ 1, or more generally min
t≥0

x̃N(t,1)≥ s, then ĀN(β) = ĀF .

2. If ρ < 1 < ρ̄ and max
t≥0

x̃N(t,0) > s > min
t≥0

x̃N(t,1), there is a threshold β∗a ∈ (0,0.5) such that

ĀN(β∗a) = ĀF and:

(a) If β ∈ [0, β∗a), then ĀN(β)< ĀF .

(b) If β ∈ (β∗a,1], then ĀN(β)> ĀF .

Comparing Propositions 3.2 and 4.2 with Proposition 2 shows that non-stationary arrivals yield

one key difference compared to stationary settings: A trade-off between queueing and abandonment

in the practically most relevant regime where the system alternates between under- and overloaded

(ρ< 1< ρ̄):2 For β <min(β∗a, β
∗
q ) the no-information downside of higher congestion (a longer queue

length) is offset by throughput gain, i.e., a lower abandonment rate; for β > max(β∗a, β
∗
q ) this

trade-off is reversed, as full information yields more congestion and higher throughput.

Intuitively, this trade-off follows because the information regime with the larger number-in-

system also experiences a higher average server utilization, implying that more customers are served

and fewer abandon, compared to the information regime with the smaller number-in-system.

In sum, information design in non-stationary systems that alternate between under- and over-

loaded is subject to a trade-off between two conflicting key objectives, minimizing congestion

(queueing) and maximizing throughput (minimizing abandonment). The key implication is that the

information design must carefully consider and balance the impact on both performance measures,

queue length and abandonment, as well as the resulting costs and benefits. For example, with rel-

atively more pessimistic customers (i.e., larger β), no information is preferable to full information

if the resulting throughput loss and/or the cost of abandonment per customer are relatively small.

6.5. Two-Class Priority System with Stationary Arrivals

We now consider systems with two priority classes, starting with the case of stationary arrivals.

The interplay between two priority classes yields a key difference, compared to the single-class

setting: The information design may have opposite effects on the queue lengths of the two classes.

Building on the balance equations (13)-(18), Proposition 5 makes these effects precise by ranking

for each class the equilibrium number-in-system under no (N) vs. full (F) information, as function

of the system loads. Information does not affect the abandonment rates in stationary systems.

Proposition 5. For two-priority systems with stationary arrivals, the equilibrium average

numbers-in-system and abandonment rates under no (N) and full (F) information compare as follows:

2 The thresholds β∗q and β∗a are close but do not necessarily coincide; either threshold may be larger, and their ranking
depends on the abandonment rate function and system loads.



21

1. If ρ1 ≤ 1, then x̄N1 (β) = x̄F1 = sρ1 and ĀN1 (β) = ĀF1 = 0.

For LP customers:

(a) If ρ1 + ρ2 ≤ 1, then x̄N2 (β) = x̄F2 = sρ2 and ĀN2 (β) = ĀF2 = 0.

(b) If ρ1 +ρ2 > 1, then ĀN2 (β) = ĀF2 = λ2−s(1−ρ1)µ2, and there exists a threshold β∗2 ∈ (0,1)

such that x̄N2 (β) = x̄F2 and:

(i) If β2 ∈ [0, β∗2) then x̄F2 < x̄
N
2 (β).

(ii) If β2 ∈ (β∗2 ,1], then x̄N2 (β)< x̄F2 .

2. If ρ1 > 1, then x̄N1 (β)> s, x̄F1 > s, Ā
N
1 (β) = ĀF1 = λ1− sµ1, and ĀN2 (β) = ĀF2 = λ2.

There exist two increasing threshold functions β∗1(β2) ∈ (0,0.5) and β∗2(β1) ∈ (0,1], which are

decreasing in the LP load ρ2, and partition the parameter space of β into four regions:

(a) If β1 ∈ [0, β∗1(β2)) and β2 ∈ [0, β∗2(β1)), then x̄N1 (β)> x̄F1 and x̄N2 (β)> x̄F2 .

(b) If β1 ∈ [0, β∗1(β2)) and β2 ∈ (β∗2(β1),1], then x̄N1 (β)> x̄F1 and x̄N2 (β)< x̄F2 .

(c) If β1 ∈ (β∗1(β2),1] and β2 ∈ [0, β∗2(β1)), then x̄N1 (β)< x̄F1 and x̄N2 (β)> x̄F2 .

(d) If β1 ∈ (β∗1(β2),1] and β2 ∈ (β∗2(β1),1], then x̄N1 (β)< x̄F1 and x̄N2 (β)< x̄F2 .

Underloaded HP class (Proposition 5.1): In this case HP customers do not queue and uti-

lize sρ1 servers. As a result, for LP customers the system is equivalent to a single-class stationary

system with s(1−ρ1) servers. Therefore, the results of Proposition 5.1 for LP customers are consis-

tent with Proposition 2 for the single-class case: Compared to full information (F), no information

(N) yields a larger (smaller) number of LP customers for β2 below (above) some threshold.

Overloaded HP class (Proposition 5.2): If the system is overloaded with HP customers,

more information may have the same or opposite effect on the HP and LP queue lengths. Before

elaborating on these results, we note that, whereas no LP customers are getting served in this regime

with HP overload, the results of Proposition 5.2 are relevant as they continue to hold in two cases

where some LP customers are getting served: (1) in the fluid limit for the practically important

case with non-stationary arrivals and alternating HP under/overload (see §6.6, Proposition 7), and

(2) in stochastic systems with heavy HP load but ρ1 < 1.

Proposition 5.2 delivers two main insights on the queue length effects of information:

(1) Considering each priority class in isolation, the effects of information and the underlying

driver, are fully consistent with the single-class results of Proposition 2: For each class, no informa-

tion (N) yields a longer (shorter) queue than full information (F), if this class’ position parameter

β is below (above) a threshold. For example, for the LP class, Parts 2(a) and (b) establish that,

holding β1 constant, N yields a longer LP queue than F if β2 <β
∗
2(β1), and vice versa if β2 >β

∗
2(β1).

(2) Considering both priority classes jointly, the information design may have opposite effects

on their queue lengths: Compared to full information, no information increases the queue of the
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relatively optimistic class (β below the class threshold) and decreases the queue of the relatively

pessimistic class (β above the class threshold). For example (see Part 2(b)), for β1 < β∗1(β2) and

β2 >β
∗
2(β1), no information increases the HP queue and reduces the LP queue.

Example 2. To illustrate Proposition 5.2, Figure 5 shows how the ranking of the equilibrium

numbers-in-system under no and full information depends on β at low (ρ2 = 0.1) and high (ρ2 = 1)

LP loads. Each point in Figure 5 corresponds to a (β1, β2) combination. Figure 5 shows:

1. Information effect on HP queue length mainly depends on β1: Figures 5(a)-(b).

Figures 5(a)-(b) show that, regardless of the LP load, the HP queue length is minimized under

full information for low β1, and under no information for high β1.

2. Information effect on LP queue length also depends on LP load ρ2: Figures 5(c)-(d).

Figure 5(c) shows that for low LP load (ρ2 = 0.1), the threshold β∗2(β1) = 1 for β1 > 0.75; this

means no information yields a longer LP queue (x̄N2 (β)> x̄F2 ), even if LP customers are maximally

pessimistic, i.e., β2 = 1. In contrast, Figure 5(d) shows that for high LP load (ρ2 = 1), the threshold

β∗2(β1)< 1 for all β1, meaning that no information yields a shorter LP queue (x̄N2 (β)< x̄F2 ), if LP

customers are sufficiently pessimistic, i.e., β2 ∈ (β∗2(β1),1].

3. Consistent vs. opposite information effects on HP and LP queue lengths: Figures 5(e)-(f).

The blue and yellow areas in Figures 5(e)-(f) correspond to cases where information design has

consistent effects on the queue lengths of both classes: The blue area corresponds to Part 2(a),

i.e., both β1 and β2 are below the respective thresholds, so full information minimizes the queue

lengths of both classes. The yellow area corresponds to Part 2(d), i.e., both β1 and β2 exceed the

respective thresholds, so no information minimizes the queue lengths of both classes.

In contrast, the green and red areas in Figures 5(e)-(f) correspond to cases where information

design is subject to a trade-off between high- and low-priority queue lengths, i.e., one design

minimizes the HP queue length but the other minimizes the LP queue length: The green area

corresponds to Part 2(b), i.e., β1 is below and β2 above the respective threshold, so that full

information minimizes the HP queue length but no information minimizes the LP queue length.

Similarly, the red area corresponds to Part 2(c), i.e., β1 is above and β2 below the respective

threshold, so no information minimizes the HP queue but full information minimizes the LP queue.

6.6. Two-Class Priority System with Non-Stationary Periodic Arrivals

We turn to the general case with two priority classes and non-stationary arrivals. This case gives

rise to three possible HP load regimes:

(i) Uniformly underloaded HP class (ρ̄1 ≤ 1). In this load regime, information only affects the LP

class, and the results are consistent with those for single-class non-stationary systems (Propositions

3 and 4). We provide analytical results for this regime in Proposition 6. These results also extend
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(a) average HP number-in-system, ρ2 = 0.1 (b) average HP number-in-system, ρ2 = 1

(c) average LP number-in-system, ρ2 = 0.1 (d) average LP number-in-system, ρ2 = 1

(e) combined ranking, ρ2 = 0.1 (f) combined ranking, ρ2 = 1

Figure 5 Stationary two-priority system: Ranking of equilibrium numbers-in-system under information regimes

N and F, as function of β (µ1 = µ2 = 1, s= 100, θ(x) = 2− e−x, ρ1 = 1.5).
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the single-class results to systems with time-varying capacity.

(ii) HP class alternating between under- and overloaded (ρ
1
< 1< ρ̄1). This practically prevalent

load regime shows that the results for simpler systems in §6.3-6.5 are robust, and also gives rise to

an important additional trade-off, between HP and LP abandonment, that does not arise in simpler

systems. This is technically the most challenging regime. We present a combination of analytical

results (Propositions 7 and 8) and numerical results (Example 3 and Figure 6).

(iii) Uniformly overloaded HP class (ρ̄1 ≥ 1). In this load regime, information only affects the

number-in-system, and the respective ranking results are consistent with those for two-class station-

ary systems (Proposition 5.2). For the sake of brevity, we omit these results and related discussion.

Uniformly Underloaded HP class (ρ̄1 ≤ 1): Proposition 6 summarizes how information

affects the equilibrium average numbers-in-system and average abandonment rates.

Proposition 6. For two-priority systems with non-stationary periodic arrivals and uniformly

underloaded HP class (i.e., ρ̄1 ≤ 1), the equilibrium average numbers-in-system and abandonment

rates under no (N) and full (F) information compare as follows:

1. Numbers-in-system: x̄N1 (β) = x̄F1 ≤ s. For LP, if max
t≥0

(x̃N1 (t, (β1,0)) + x̃N2 (t, (β1,0)))> s, there

is a threshold β∗q ∈ (0,0.5) such that x̄N2 (β1, β
∗
q ) = x̄F2 and:

(a) If β2 ∈ [0, β∗q ), then x̄N2 (β)> x̄F2 .

(b) If β2 ∈ (β∗q ,1], then x̄N2 (β)< x̄F2 .

2. Abandonment: ĀN1 (β) = ĀF1 = 0. For LP, if max
t≥0

(x̃N1 (t, (β1,0)) + x̃N2 (t, (β1,0))) > s >

min
t≥0

(x̃N1 (t, (β1,1)) + x̃N2 (t, (β1,1))), there is a threshold β∗a ∈ (0,0.5) such that ĀN2 (β1, β
∗
a) = ĀF2 and:

(a) If β2 ∈ [0, β∗a), then ĀN2 (β)< ĀF2 .

(b) If β2 ∈ (β∗a,1], then ĀN2 (β)> ĀF2 .

We note that the values of the thresholds β∗q and β∗a are close but need not coincide.

In systems with uniform HP underload, information clearly has no effect on HP customers

because they never queue. Therefore, for LP customers the system is equivalent to a single-class

non-stationary system with time-varying capacity. Proposition 6 shows that our results on the

performance effects of information generalize naturally from the single-class non-stationary case

with constant capacity (Propositions 3.2 and 4.2) to the LP class in two-class systems with uniform

HP underload. Specifically, for sufficiently small β2, no (N) information yields a longer LP queue

length (at all times) and lower average LP abandonment rate, compared to full (F) information.

Conversely, for sufficiently large β2, no (N) information yields a shorter LP queue length (at all

times) and higher average LP abandonment rate, compared to full (F) information (unless LP

customers never queue even under no information, i.e., maxt≥0 (x̃N1 (t,β) + x̃N2 (t,β)) ≤ s). These
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results on the trade-off between less queueing and more abandonment under no vs. full information

are consistent with those for single-class systems with non-stationary arrivals with constant capacity

(Propositions 3.2 and 4.2) and also extend these results to systems with time-varying capacity.

HP Class Alternating Between Under- And Overloaded (ρ
1
< 1< ρ̄1): We turn to the

practically prevalent case with alternating HP under-/overload. This is also the technically most

challenging case. We present a combination of analytical (Propositions 7 and 8) and numerical

results (Example 3 and Figure 6). For one, we show that our results for simpler systems are robust,

specifically, the two performance trade-offs: (i) between number-in-system and abandonment of the

same class under non-stationary arrivals (Propositions 3 and 4 for single-class systems, Proposition

6 for LP class in two-class systems with uniform HP underload), and (ii) between the HP and LP

numbers-in-system (Proposition 5.2 for stationary arrivals). Furthermore, we identify an important

additional trade-off, between HP and LP abandonment, which is unique to this load regime.

Proposition 7 establishes the following information effects on the equilibrium numbers-in-system.

Proposition 7. For two-priority systems with non-stationary periodic arrivals and at least

occasional HP overload (ρ̄1 > 1), the equilibrium numbers-in-system under no (N) and full (F) infor-

mation compare as follows:

1. If β1 = 0, then for HP: x̃N1 (t,β)≥ x̃F1 (t) ∀t, and x̄N1 (β)> x̄F1 if max
t≥0

x̃N1 (t,β)> s.

For LP customers:

(a) β2 = 0: Then x̃F2 (t)< x̃N2 (t,β) ∀t, if min
t≥0

x̃F1 (t)≥ s.

(b) β2 = 1: Then x̃F2 (t)> x̃N2 (t,β) ∀t, if max
t≥0

x̃F1 (t)> s and µ2 ≤ θ(0).

2. If β1 ≥ 0.5 then for HP: x̃N1 (t,β)≤ x̃F1 (t) ∀t, and x̄N1 (β)< x̄F1 if maxt≥0 x̃
F
1 (t)> s.

For LP customers:

(a) β2 = 0: Then x̃F2 (t)< x̃N2 (t,β) ∀t, if maxt≥0 x̃
F
1 (t)> s and µ2 ≤ θ(0).

(b) β2 = 1: Then there are LP load thresholds tildeρ1
2 < ρ̃

2
2 such that

i. x̃F2 (t)< x̃N2 (t,β) ∀t, if ρ̄2 < ρ̃
1
2 and min

t≥0
x̃N1 (t,β)≥ s.

ii. x̃F2 (t)> x̃N2 (t,β) ∀t, if ρ
2
> ρ̃2

2 and min
t≥0

x̃N1 (t,β)≥ s, or max
t≥0

x̃N1 (t,β)> s and µ2 ≥ θ(∞).

Remark 3. Proposition 7 provides results on the uniform ranking of the equilibrium processes

at all times t, focusing on four combinations of low and high β1 and β2, i.e., β1 ∈ {0, [0.5,1]} and

β2 ∈ {0,1}. These results imply the same rankings for the time averages of these processes, and

also highlight how the ranking of these time averages depends more generally on the β parameters:

Specifically, the ranking of average queue lengths for class i under F vs. N reverses as the queue

position perception parameter βi increases from low to high. Our numerical results illustrate this

structure for the entire β range (Example 3 and Figure 6).
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The key insights from Proposition 7 on the queue length effects of information are consistent

with those of Proposition 5.2 for the stationary two-class case with HP overload:

(1) For each priority class, compared to full information (F), no information (N) generally yields

a longer queue if the class position parameter β is low, and a longer queue if β is high.

(2) The information design may have opposite effects on the queue lengths of the two classes.

Specifically, compared to full information (F), no information (N) generally increases the queue of

the optimistic class (β = 0) and decreases the queue of the pessimistic class (β = 1). Furthermore,

information may also have opposite queue length effects if both classes are relatively pessimistic

and the LP load is below a treshold: Specifically, by Part 2(b)i. of Proposition 7, for β1 ≥ 0.5 and

β2 = 1, full information increases the HP queue length, but reduces the LP queue length if the LP

load is below a threshold (ρ̄2 < ρ̃
1
2). This is consistent with the stationary case; see Figure 5(e).

Proposition 8 establishes the following ranking of the average abandonment rates.

Proposition 8. For two-priority systems with non-stationary periodic arrivals and HP class

that alternates between under- and overloaded (ρ
1
< 1< ρ̄1), information has the following effects

on the average abandonment rates:

1. If β1 = 0, then for HP: ĀN1 (β)≤ ĀF1 , with strict inequality iff max
t≥0

x̃N1 (t,β)> s>min
t≥0

x̃F1 (t).

For LP customers:

(a) β2 = 0: Then ĀN2 (β) = ĀF2 if min
t≥0

x̃F1 (t)≥ s.

(b) β2 = 1: Then ĀN2 (β)> ĀF2 , if max
t≥0

x̃F1 (t)> s>min
t≥0

x̃F1 (t) and µ2 ≤ θ(0).

2. If β1 ≥ 0.5 then for HP: ĀN1 (β)≥ ĀF1 , with strict inequality iff max
t≥0

x̃F1 (t)> s>min
t≥0

x̃N1 (t,β).

For LP customers:

(a) β2 = 0: Then ĀN2 (β)< ĀF2 , if max
t≥0

x̃F1 (t)> s>min
t≥0

x̃N1 (t,β) and µ2 ≤ θ(0).

(b) β2 = 1: Then ĀN2 (β) = ĀF2 if min
t≥0

x̃N1 (t,β)≥ s.

Propositions 7 and 8 show that information design involves two abandonment-related trade-offs

in non-stationary two-priority systems with alternating HP over-/underload:

(1) Between abandonment and number-in-system for each class. This trade-off is consistent with

settings where a single class experiences queueing (Propositions 3.2, 4.2, and 6).

(2) Between the HP and LP abandonment rates. This trade-off arises only in non-stationary

systems with two classes that experience queueing. Specifically, if β1 = 0 and β2 = 1, no infor-

mation (N) minimizes the HP abandonment rate whereas full information (F) minimizes the LP

abandonment rate (see Part 1(b)), and vice versa if β1 ≥ 0.5 and β2 = 0 (see Part 2(a)).

Numerical Study. We conclude the analysis of non-stationary two-class priority systems with

a numerical study that shows how the theoretical ranking results of Propositions 7 and 8 for

specific low/high (β1, β2) pairs extend to the entire β range. We focus on the time-averages of the
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Average Number-In-System

(a) HP (b) LP (c) HP and LP

Average Abandonment Rate

(d) HP (e) LP (f) HP and LP

Figure 6 Non-stationary two-priority system: Ranking of equilibrium performance metrics under information

regimes N and F, as function of β

µ1 = µ2 = 1, s= 100, ρ1 = 0.9, ρ2 = 0.5, λk(t) = sρk(1− 0.5 sin (πt/12)), θ(x) = 2− e−x.

equilibrium numbers-in-system and abandonment rates, because (i) these averages are of first-order

importance, and (ii) the time-varying processes need not obey a uniform ranking at all times.

Example 3. We consider the same supply parameters (µ1 = µ2 = 1, s= 100) and abandonment

rate function (θ(x) = 2− e−x) as in Example 2, but the following more moderate and time-varying

arrival rates: λk(t) = sρk(1−0.5 sin (πt/12)), for k= 1,2, where ρ1 = 0.9 and ρ2 = 0.5 are the average

HP and LP loads, respectively. Note that θ(0) = µ2 < θ(∞), ρ
1

= 0.45< 1, and ρ̄1 = 1.35> 1. These

parameters satisfy the conditions in Parts 1(b) and 2(a) of Propositions 7 and 8. Figure 6 shows the

rankings of the equilibrium average numbers-in-system (plots (a)-(c)) and average abandonment

rates (plots (d)-(f)) under no (N) vs. full (F) information, as functions of (β1, β2)∈ [0,1]× [0,1].

Figure 6 shows the following information design effects, consistent with Propositions 7 and 8:

1. Trade-off between HP number-in-system and abandonment rate: Figures 6(a) and (d) show

that, if HP customers are sufficiently optimistic (e.g. β1 < 0.1), then full information (F) reduces

the number-in-system but increases the abandonment rate, compared to no information (N); if HP

customers are sufficiently pessimistic (e.g., β1 > 0.2) then full information has the opposite effects.
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2. Trade-off or alignment between LP number-in-system and abandonment rate: Figures 6(b) and

(e) show that for LP customers, information design involves a similar trade-off between queueing

and abandonment, as for HP customers, with the following qualification: For β1 ≤ 0.4, this trade-off

arises for sufficiently low or high β2. However, for β1 > 0.4, this trade-off arises only if LP customers

are sufficiently optimistic (β2 / 0.6), whereas no information minimizes both, number-in-system

and abandonment, if LP customers are more pessimistic (β2 ' 0.6).

3. Consistent vs. opposite information effects on HP and LP numbers-in-system: Figure 6(c)

shows that the information design may have consistent or opposite effects on the two classes. The

blue and yellow areas correspond to β parameters with consistent information effects for both

classes: Both queue lengths are minimized under full information, if both classes are sufficiently

optimistic (blue area), and under no information if they are sufficiently pessimistic (yellow area).

In contrast, the red and green areas correspond to β parameters that yield opposite information

effects on the HP and LP classes. The red area corresponds to β parameters (sufficiently pessimistic

HP and optimistic LP customers) where full information increases the HP queue but reduces the

LP queue. The green area corresponds to β parameters (sufficiently optimistic HP and pessimistic

LP customers) where no information yields the same trade-off, longer HP but shorter LP queue.

These results are also consistent with the stationary case; see Proposition 5.2 and Figure 5(f).

4. Consistent vs. opposite information effects on HP and LP abandonment rates: Figure 6(f)

similarly shows that the information design may have consistent effects (blue and yellow areas) or

opposite effects (red and green areas) on the abandonment rates of the two classes, depending on

customers’ queue position perceptions in the absence of full information.

7. Robustness Checks

In this section, we establish the robustness of our key results if one relaxes important assumptions.

In Section 7.1, we consider a generalized no-information model with waiting-time dependent queue

position perceptions; we establish the robustness of our comparison results under this generalized

model. In Section 7.2, we show that our comparison results based on fluid approximations are

also valid for small and moderately-sized systems. In Section 7.3 we explain how our performance

comparison results apply to the waiting time metric. Finally, in Section 7.4 we discuss how our

performance comparison results apply to settings with time-varying capacity.

7.1. A Generalized Model of Waiting-Time-Dependent Queue Position Perception

Our no-information model captures class-k customers’ perceived queue position via the class-

dependent constant position fraction βk. A more general no-information model would allow the

position fraction to be dynamic and waiting-time-dependent. Denote by wkl(t) the elapsed waiting
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time of the class k customer in position l of her class by time t and w(t) as the vector contain-

ing wkl(t) for all customers in queue. Then, a more general no-information model would assume

a dynamic and waiting-time-dependent position fraction, i.e., β(wkl(t)). For simplicity, we refer

to the no-information model with such waiting-time-dependent position fractions as the β(w(t))

model. Recall that we call the model with class-dependent constant β that we analyzed so far the

βk model. In this section, we show numerically that this class-dependent βk model serves as an

accurate approximation to the β(w(t)) model. Before we proceed with details, we summarize the

model assumptions, key finding, and interpretations.

• Model. We assume that β : R+
0 → (0,1] is a non-increasing function with β(0) = 1 and

limx→∞β(x) = 0. These assumptions reflect that customers perceive to be at the end of the queue

upon arrival (β(0) = 1) and progressively improve their perception (lower their β) as their wait-

ing time accumulates. We explore a wide range of non-increasing β(x) functions; see Table 1.

Throughout, we assume a common β(x) function for both classes, mainly for the sake of simplicity.

• Key finding. For both stationary and non-stationary two-class priority systems, the equilibrium

average numbers-in-system and abandonment rates for any given β(x) function, can be accurately

approximated by appropriately choosing the (β1, β2) pair in our βk model.

• Interpretations.

(i) It is intuitive that our βk model can be “tuned” to match the performance under the more

general β(w(t)) model: Whereas the β(w(t)) model tracks the waiting-time-dependent, and there-

fore heterogeneous, queue position beliefs of all present customers at all times, the appropriately

chosen βk parameters simply reflect the class-level averages of these beliefs over time. Therefore,

the values of the matching (β1, β2) depend on both the β(x) function’s rate of decline, and the

waiting times experienced in each class.

(ii) For a common (class-independent) β(x) function (our focus in this section), we consistently

observe β1 >β2, as HP customers have shorter waiting times than LP customers; see Table 2.

(iii) However, we think our βk model should be similarly accurate in approximating the perfor-

mance for a class-dependent β(w(t)) model.3 Such a class-dependent model is flexible enough to

capture the notion that LP customers may be somehow aware of their lower priority - even without

being explicitly informed, and may therefore perceive their queue positions to improve at a slower

rate, so that β′1(x)<β′2(x)< 0. In that case, the values of the matching βk model would reflect on

average more optimistic HP customers, i.e., β1 <β2.

Analytical approach. The theoretical analysis of the performance of the waiting-time-

dependent β(w(t)) model is challenging due to w(t) being a vector with time-varying, state-

dependent, and continuous components wkl(t). Therefore, obtaining the equilibrium of the system

3 This also requires matching the same number of performance metrics using two parameters, as for a common β(x).
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by establishing a convergence theorem for this model, and conducting further performance analysis,

are difficult. However, we can gain insights into its performance by simulating the corresponding

stochastic system. Therefore, we assess the flexibility of our class-dependent βk model by compar-

ing the two key performance metrics, average numbers-in-system and abandonment rates, derived

from the simulated stochastic system under the β(w(t)) model against those obtained from the

fluid-based βk model. We do so for two primary reasons. First, comparing with fluid βk model

approximations, rather than the actual stochastic measures, is computationally efficient and reduces

the computational error. Second, the primary focus of this paper is on comparing performance

metrics in fluid equilibrium under different information models. Therefore, we aim to demonstrate

that the βk model serves as a good approximation of the β(w(t)) model under fluid scaling.

Assumptions for β(w(t)) model. We assume that β(wkl(t)) is a value in (0,1] representing

a customer’s belief about her relative position in queue after waiting for wkl(t) units of time. A

lower β(wkl(t)) value signifies a belief in being closer to the front of the queue. Therefore, when

wkl(t) is small, a newly arrived customer perceives herself to be at the tail of the queue, indicated

by β(wkl(t)) approaching 1. As the waiting time wkl(t) accumulates, the customer anticipates

progressing forward in the queue, resulting in a decrease in β(wkl(t)). Conversely, when wkl(t) is

large, the customer assumes a position closer to the head of the queue, with β(wkl(t)) approaching

0. Thus, it is natural to assume that β(wkl(t)) is non-increasing in wkl(t), as we do here.

Simulation experiments. We use simulation to examine the robustness of our approximation.

Assume that µ1 = 1, µ2 = 1, s= 100. Given the absence of empirical evidence on the form of β(x),

we explore a wide range of non-increasing β(x) functions, including both convex to concave shapes.

These are detailed in the first column of Table 1 and plotted in Figure 7. We also explore various

abandonment rate functions θ(x); see the second column of Table 1.

We investigate both stationary and non-stationary arrivals, each with different sets of average

system loads, as shown in the last column of Table 1. Specifically, when the arrival rates are non-

stationary, we examine the following set of sinusoidal arrival rates with the average system loads

provided in Table 1: λ1(t) = ρ̄1µ1s(1− 0.5 sin(πt/12)), λ2(t) = ρ̄2µ2s(1− 0.5 sin(πt/12)).

For each set of parameters and specific form of β(·), we first generate the sample path

of the number-in-system process XN(t, β(w(t))) under waiting-time-dependent β(w(t)) by

generating the arrival, service, and abandonment processes of the system. Note that, the

aggregate class k abandonment rate of the abandonment process at time u is defined as:

A1(XN(u,β(w(u)))) :=

(XN1 (u,β(w(u)))−sn)+∑
l=1

θ

(
β(w1l(u))(XN

1 (u,β(w(u))) +XN
2 (u,β(w(u))− s)+

s

)
,

A2(XN(t, β(w(t)))) :=

(XN2 (u,β(w(u))−(s−XN1 (u,β(w(u))))+)
+∑

l=1

θ

(
β(w2l(u))(XN

1 (u,β(w(u))) +XN
2 (u,β(w(u))− s)+

s

)
.
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β(x) θ(x) (ρ̄1, ρ̄2)

reciprocal β(x) = 1/(1 + cx) 2− e−x (1.5, 0.5)

exp β(x) = e−cx 2− e−0.5x (2, 0.5)

linear β(x) = (1−x/r)+ 2− e−2x (1, 0.5)

constant β(x) = 1− i/r, for i≤ x< i+ 1, i= 0, . . . , r− 1. 1.5− e−x (1.5, 1)

concave1 β(x) = ((1−x/r)1/m)+ 2− 0.5 ∗ e−x (1.5, 1.5)

concave2 β(x) = (1− (x/r)m)+

Table 1 Parameter sets explored for model validation in Section 7.1.

(a) c= 1,m= 3, r= 10 (b) c= 2,m= 5, r= 10

(c) c= 1,m= 3, r= 2 (d) c= 2,m= 5, r= 2

Figure 7 Different forms of β(x) with various sets of parameters (refer to the function of β(x) in Table 1)

Ideally, we should continuously update the abandonment rates for customers waiting in queue

since w(t) evolves continuously. However, due to the complexity of simulating a nonhomogeneous

Poisson process with an endogenously changing rate function, we instead update the individual

abandonment rates for all customers in queue whenever there is a change in the system state. Given

the large scale of our simulated system (with s = 100), the system state updates approximately
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every 0.005 units of time. This ensures that the differences between our simulated abandonment

processes and the actual abandonment processes remain small.

We generate the sample path of the β(w(t)) model starting from an empty system, utilizing the

initial t= 100 as the warm-up period. By allowing the simulation to run for a sufficient duration

(up to time t= 1100), we consistently observe convergence to an equilibrium. Consequently, based

on the system state updates after the warm-up period, we compute the performance measures for

this system, including the long-run average numbers-in-system (x̄N1,w, x̄
N
2,w), the long-run average

system abandonment rates (ĀN1,w, Ā
N
2,w) and, in cases of non-stationary and periodic arrival rates,

the time-varying average numbers-in-system over a period (x̃N1,w(t), x̃N2,w(t)). For each parameter

set, we compare the performance measures obtained from the simulated stochastic system under

the β(w(t)) model with those obtained from the fluid equilibrium under the βk model.

Stationary arrivals. When arrival rates are stationary, we observe that, for each set of parame-

ters, the simulated sample path of the β(w(t)) model converges to an equilibrium point (x̄N1,w, x̄
N
2,w).

To identify the βk model that best approximates the β(w(t)) model, we match the average numbers-

in-system as follows: (1) We substitute (x̄N1 , x̄
N
2 ) = (x̄N1,w, x̄

N
2,w) into equations (39) and (41) to

determine β∗1 such that these two equations hold. (2) We substitute (x̄N1 , x̄
N
2 ) = (x̄N1,w, x̄

N
2,w) into

equations (40) and (43) to determine β∗2 such that these two equations hold. The βk model with

β = β∗ := (β∗1 , β
∗
2) yields the desired approximation of the β(w(t)) model. We observe that such

β∗ always exists, and the resulting βk model yields approximately the same average abandonment

rates (relative errors less than 2%) as the β(w(t)) model.

Let µ1 = 1, µ2 = 1, s = 100, θ(x) = 2− e−x, ρ1 = 1.5, ρ2 = 0.5, and β(x) = (1− x
2
)+. In Figure

8, the blue lines illustrate the trajectories of the averages from 50 simulated sample paths of the

numbers-in-system processes, truncated after running for 200 time units, under the β(w(t)) model

(with 95% confidence interval provided). The red lines represent the equilibrium numbers-in-system

under the approximating βk model with β∗1 = 0.9 and β∗2 = 0.59.4 As illustrated in Figure 8, the βk

model serves as a very good approximation of the β(w(t)) model.

Non-stationary arrivals. We now consider the case when arrival rates are non-stationary

and sinusoidal. Similar to our approach in the stationary case, we identify the approximating βk

model by matching the long-run average numbers-in-system with those of the β(w(t)) model. In

the non-stationary and periodic case, the equilibrium of the system under the fluid βk model is

time-varying and periodic. Therefore, we can not determine the optimal β∗ by directly solving the

balance equations as we did in the stationary case. For each long-run average number-in-system

(x̄N1,w, x̄
N
2,w) obtained from the simulated stochastic system under β(w(t)) model, we find the optimal

4 As explained above, that β∗1 >β
∗
2 follows because our numerical study restricts attention to a common β(x) function.
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(a) HP customers (b) LP customers

Figure 8 Average of 50 sample paths of the numbers-in-system under β(w(t)) model (with 95% confidence

interval provided) and the corresponding optimal βk model (µ1 = 1, µ2 = 1,

s= 100, θ(x) = 2− e−x, ρ1 = 1.5, ρ2 = 0.5, β(x) = (1− x
2
)+).

β∗ for βk model as follows. For each pair of (β1, β2) with βk ∈ {0,0.01, . . . ,1}, k ∈ {1,2}, we calcu-

late the time-average numbers-in-system of the fluid equilibrium under the βk model, denoted by

(x̄N1 (β), x̄N2 (β)). We then select (β1, β2) such that the average relative gap between (x̄N1 (β), x̄N2 (β))

and (x̄N1,w, x̄
N
2,w), defined as MAPEx(β) := (|x̄N1 (β)− x̄N1,w|/x̄N1 (β) + |x̄N2 (β)− x̄N2,w|/x̄N2,w)/2, is min-

imized. The identified value of (β1, β2) is denoted as β∗ = (β∗1 , β
∗
2). As illustrated in Table 2, the

βk model with β=β∗ yields average numbers-in-system very close to those of the β(w(t)) model,

with average relative gaps (MAPEx(β
∗)) of less than 0.2%.

In the non-stationary case, we not only focus on aligning the long-run average numbers-in-

system but also check whether the periodic equilibria are matched between the two models. There-

fore, we compare the time-varying periodic average trajectories of the number-in-system processes

under the β(w(t)) model (i.e., (x̃N1,w(t), x̃N2,w(t))) and the corresponding βk model with β∗ (i.e.,

(x̃N1 (t,β∗), x̃N2 (t,β∗))). As illustrated in Figure 9, the trajectories of the HP number-in-system

overlap, indicating that our optimal βk model with β∗ serves as a reliable approximation for the

β(w(t)) model, even in the context of the time-varying HP number-in-system. For the LP class,

the equilibrium fluid trajectory under the βk model exhibits a comparable yet smoother shape,

with a reduced amplitude, compared to the β(w(t)) model.

Now that we have illustrated the robustness of the approximating βk model in terms of the

average number-in-system, we turn to examining whether this model serves as a reliable approx-

imation for the average system abandonment rate. We do so by evaluating the average relative

gap of the long-run time-average system abandonment rates, defined as MAPEa(β) := (|ĀN1 (β)−

ĀN1,w|/ĀN1 (β) + |ĀN2 (β) − ĀN2,w|/ĀN2,w)/2, between the β(w(t)) model and the optimal βk model.

Table 2 presents the comparative results between these two models in terms of the time-average
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(a) HP customers, β(x) = (1−x/2)+ (b) LP customers, β(x) = (1−x/2)+

(c) HP customers, β(x) = e−2x (d) LP customers, β(x) = e−2x

Figure 9 Trajectories of numbers-in-system processes in periodic equilibrium under the optimal βk models,

compared with the average sample path of the β(w(t)) model (µ1 = 1, µ2 = 1,

s= 100, θ(x) = 1.5− e−x, λ1(t) = 150(1− 0.5 sin(πt/12)), λ2(t) = 50(1− 0.5 sin(πt/12))).

β(x) β(w(t)) model optimal βk model MAPEx(β
∗) MAPEa(β

∗)

x̄N1,w x̄N2,w ĀN1,w ĀN2,w β∗ x̄N1 (β∗) x̄N2 (β∗) ĀN1 (β∗) ĀN2 (β∗)

exp 144.86 60.72 54.64 42.62 (0.61,0.30) 144.90 60.84 53.77 46.23 0.11% 5.02%

reciprocal 144.41 51.46 54.59 42.79 (0.69, 0.59) 144.45 51.37 53.77 46.23 0.10% 4.76%

linear 140.94 51.78 54.65 42.86 (0.91, 0.59) 140.95 51.82 53.83 46.17 0.04% 4.62%

constant 140.33 47.47 54.64 42.94 (0.99, 0.84) 140.51 47.48 53.83 46.17 0.08% 4.50%

concave1 140.69 46.24 54.64 43.08 (0.99, 0.94) 140.66 46.19 53.83 46.17 0.06% 4.33%

concave2 140.30 46.13 54.62 42.99 (0.99, 0.94) 140.66 46.19 53.83 46.17 0.19% 4.42%

Table 2 Performance comparisons between β(w(t)) model and optimal βk model for various β(x) functions.

(µ1 = 1, µ2 = 1,

s= 100, θ(x) = 1.5− e−x, λ1(t) = 150(1− 0.5 sin(πt/12)), λ2(t) = 50(1− 0.5 sin(πt/12)), c= 2,m= 5, r= 2.)

system abandonment rates for various β(x) functions. We observe that the approximating βk model

also maintains a small gap in the time-average system abandonment rates (less than 5%).

We also find that our comparative results between no and full information designs are consistent

under the βk and β(w(t)) models, despite the small difference in average abandonment rates.
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β(x) HP abandonment rate LP abandonment rate

No info with β(w(t)) No info with optimal βk Full info No info with β(w(t)) No info with optimal βk Full info

exp 54.64 53.77 53.50 42.62 46.23 46.50

reciprocal 54.59 53.77 53.50 42.79 46.23 46.50

linear 54.65 53.83 53.50 42.86 46.17 46.50

constant 54.64 53.83 53.50 42.94 46.17 46.50

concave1 54.64 53.83 53.50 43.08 46.17 46.50

concave2 54.62 53.83 53.50 42.99 46.17 46.50

Table 3 Comparison of average abandonment rates between no information β(w(t)) model, no information

optimal βk model, and full information model for various β(x) functions. (µ1 = 1, µ2 = 1,

s= 100, θ(x) = 1.5− e−x, λ1(t) = 150(1− 0.5 sin(πt/12)), λ2(t) = 50(1− 0.5 sin(πt/12)), c= 2,m= 5, r= 2.

We illustrate this using the same sets of parameter values as in Table 2. We obtain the average

abandonment rates under full information system, ĀF1 , Ā
F
2 , and compare them with those obtained

from the no information models in Table 3. As shown in Table 3, our comparisons between the no

information model with βk and full information models regarding the average abandonment rates

remain robust.

Note that the impact of different β(x) functions on the long-run average system abandonment

rates is limited. This is because the variation in the form of β(x) function is inherently bounded by

1 (by definition) and further constrained by the range of the θ(x) function. Additionally, in highly

overloaded systems (as in Table 3), servers are almost always busy regardless of the β(x) function

used, resulting in a similar level of throughput across all systems. Since the difference in system

abandonment rates corresponds to the difference in system throughputs, these differences should

be small. On the other hand, when system loads are low, abandonment rates are low, and β(x) has

low impact on the system through abandonments.

7.2. Small Stochastic Systems

In Theorem 1, we establish the convergence of fluid-scaled stochastic processes to corresponding

fluid limits, as the system size increases without bound. In this section, we use simulation experi-

ments to illustrate the accuracy of the fluid approximations as well as our comparison results for

systems with a moderate number of servers (e.g., less than 50).

We consider two-class systems with time-varying arrival rates, under no and full information

models. Specifically, we assume that µ1 = µ2 = 1, s= 20, θ(x) = 5− 4e−x, β = (1,1), and λk(t) =

ρkµks(1− 0.8 sin (πt/12)). We consider two sets of system load when the system switches between

over- and under-loaded: relatively low load with ρ1 = ρ2 = 0.8, and high load with ρ1 = ρ2 = 1.5. For

each information level, we estimate the expected average number of customers in periodic steady-

state using simulation. In Figures 10 and 11, we plot 95% confidence intervals for the expected

number-in-system process, under each information level, along with corresponding time-dependent

fluid limits, at equilibrium, over one period, for ρ1 = ρ2 = 0.8 and 1.5, respectively. Based on Figures

10 and 11, we make two observations:
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(a) HP customers (b) LP customers

Figure 10 Comparisons of the number-in-system trajectories under different information levels for the

simulated stochastic systems and the fluid models (µ1 = µ2 = 1,

s= 20, θ(x) = 5− 4e−x,β= (1,1), ρ1 = ρ2 = 0.8, λk(t) = ρkµks(1− 0.8 sin (πt/12))).

(a) HP customers (b) LP customers

Figure 11 Comparisons of the number-in-system trajectories under different information levels for the

simulated stochastic systems and the fluid models (µ1 = µ2 = 1,

s= 20, θ(x) = 5− 4e−x,β= (1,1), ρ1 = ρ2 = 1.5, λk(t) = ρkµks(1− 0.8 sin (πt/12))).

1. For each information level, the periodic fluid equilibrium curve is very close to the corre-

sponding simulation-based estimate of the expected number-in-system, which implies that our fluid

approximations are fairly accurate even with a small (i.e., s= 20) number of servers.

2. The simulation-based ranking is consistent with the fluid-based ranking at each point in

time. In particular, the number-in-system rankings in our numerical examples lie in Cases 2 of

Proposition 7 and align with Figure 6.(c).
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For further robustness checks, we consider systems with alternative sizes, e.g., s = 10 or 50; our

observations and conclusions are consistent with those for the case of s= 20; see Appendix D.

Next, we examine the accuracy of the fluid-based average system abandonment rankings for the

stochastic systems. In particular, for various sets of parameters, we estimate the expected average

system abandonment rates of the stochastic systems under no and full information and obtain their

rankings (statistically significant at 95% confidence level) using simulation. We observe that, when

s = 20, the simulation-based average system abandonment rate rankings are consistent with the

fluid-based rankings.

Overall, the results indicate that our fluid-based average number-in-system and abandonment

rankings are also valid for small and moderately-sized stochastic systems.

7.3. Comparing information levels with respect to waiting time

Our results focus on the two key performance metrics of queue length and abandonment rate.

Another important performance metric is the average waiting time. This metric is connected to the

queue length through Little’s Law and, as such, the comparative results in Section 6 concerning

long-run average performance also apply to the waiting time metric. Specifically, by Theorem LL.2

in John (2011) we have that, under information design I, LIk = λkW
I
k , where LIk is the equilibrium

class k average queue length, λk is the class k average arrival rate, and W I
k is the equilibrium

class k average waiting time. Note that, by the remarks on Theorem LL.1 in John (2011), Little’s

law holds irrespective of the queue discipline and under non-stationary arrivals, as long as we are

concerned with long-run average performance; see also Theorem 2.1. of Whitt (2015). Therefore,

we can deduce the waiting time rankings from the average queue length rankings presented in

Section 6.

7.4. Non-stationary number of servers

Our paper focuses on systems with a static number of servers, s. In practice, however, the number of

servers may be non-stationary and vary over the course of a week or a day to accommodate service

providers’ preferences or constraints. For cases where the number of servers is non-stationary and

periodic, denoted as s(t), our main results generalize as illustrated below.

For the single-class case, analyzing a system with a non-stationary number of servers s(t) is

equivalent to focusing on LP customers in a system with two classes, non-stationary arrivals, and a

uniformly underloaded HP class, where the comparison results are provided in Proposition 6. This

implies that our comparison results for single-class system with a stationary number of servers

generalize to the system with a non-stationary number of servers.

For the two-class case, denote s̄ := maxt≥0 s(t) and ∆s(t) = s̄−s(t), then a two-class system with

non-stationary number of servers s(t) and HP arrival rate λ1(t) is equivalent to a system with a
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stationary number of servers s̄ and HP arrival rate λ1(t) + µ1∆s(t). As such, our results are also

relevant for systems with non-stationary number of servers.

8. Conclusions
8.1. Summary of Main Results

This paper contributes theoretical models and insights on the effects of providing information in

observable service systems with abandonment. We consider a Markovian queueing system with

two priority classes (HP and LP), time-varying arrival rates and abandonment, a setting that is

practically relevant but has hardly been studied in the information design literature. We propose

a fairly flexible model of how information impacts customer abandonment, which captures key

empirical findings in the literature pertaining to customer abandonment from observable queues.

Our results characterize the effects of information on key performance metrics of abandonment

and number-in-system (or waiting time) and provide insights on how these effects depend on the

interplay between: (i) Customers’ perceived queue position under no information (parameters β1

and β2); (ii) class-specific system load; (iii) temporal variability of arrival rates, and (iv) priority

service. In the presence of time-varying arrivals and with two priority classes, we observe the

following key effects and trade-offs:

• Number-in-system (and waiting time): HP-LP trade-off. The information design has opposite

effects on the queue lengths of the HP and LP classes, if their customers have sufficiently different

queue position perceptions. In such cases, compared to full information, no information increases

the queue of the relatively optimistic class (β below a threshold) and decreases the queue of the

relatively pessimistic class (β above a threshold). For example, for sufficiently low β1 and high β2, no

information increases the HP queue and reduces the LP queue, compared to full information. (See

Proposition 5 for overloaded stationary systems, and Proposition 7 and Figure 3.(c) for systems

with alternating HP under-/overload.)

• Abandonment: HP-LP trade-off in systems with non-stationary HP under-/overload. Two-

priority non-stationary systems give rise to an additional trade-off, between HP and LP

abandonment, if the HP class alternates between under- and overloaded. In such cases, compared

to full information, no information reduces the abandonment of the relatively optimistic class (β

below a threshold) and increases the abandonment of the relatively pessimistic class (β above

a threshold). For example, for sufficiently low β1 and high β2, no information reduces the HP

abandonment and increases the LP abandonment, compared to full information. (See Proposition

8 and Figure 3.(f).)
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8.2. Managerial Implications

Our results imply that effective information provision requires (i) first identifying for a particular

system whether the above trade-offs indeed exist, given the load conditions and customer percep-

tions (β parameters). (ii) In cases where such trade-offs do exist, information design must carefully

balance the queueing and abandonment costs of both classes, and/or consider hybrid designs (e.g.,

giving full information to one class but no information to the other class). Operational measures,

such as the load, should be readily measurable, whereas customer perceptions, may be estimated

using customer surveys. For example, the National Health Service (NHS) in the United King-

dom routinely conducts patient surveys to gather feedback on various aspects of their healthcare

experience, including waiting times 5.

As a concrete example, consider the following parameter regime relevant to an ED: HP class

alternates between under- and overloaded regimes; HP customers are sufficiently optimistic (i.e.,

they perceive a low queue position) and LP customers are sufficiently pessimistic (i.e., they perceive

a high queue position). In this case, providing accurate information minimizes LP abandonment

but has the appositive impact on HP abandonment. Interestingly, the field study of Westphal et al.

(2022) found that providing both operational and time information improved the sense of making

progress in the ED for patients, but information only reduced abandonment when only operational

information (and not waiting time information) was provided. Our results suggest that the impact

of information on abandonment depend on both system load and customer perceptions. As such,

these factors should be accounted for in design and empirical analysis of future field studies.

Our results also provide insights on how other operational system decisions can impact the

effects of information. More specifically, the system manager can (partially) control the system

load through staffing (or capacity allocation) decisions. Our results indicate that in scenarios with

minimal time-variation in arrival patterns, managing the system load becomes the primary factor

determining whether information provision impacts a specific class. Conversely, if arrival patterns

do vary over time, the impact of system load management becomes more nuanced, as the effects

of information are intertwined with the aforementioned trade-offs. In both scenarios, the system

manager can eliminate the information-related performance trade-offs between the two priority

classes by setting staffing levels to ensure that the HP class remains underloaded. Specifically, the

potentially significant trade-off between the HP and LP abandonment rates in non-stationary set-

tings under alternating HP under-/overload (Proposition 8) vanishes under uniform HP underload

(Proposition 6).

5 See: https://nhssurveys.org/
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8.3. Future Research

Our study motivates several future directions. In the following, we briefly discuss a few.

Our results highlight the challenges of effective information design in a complex service setting

such as the ED. In particular, the trade-offs that we identify motivate the design of more sophis-

ticated state-dependent and/or hybrid information provision systems. One way to address the

queue length and abandonment trade-off when arrivals are time-varying is to explore time/state-

dependent information designs. For systems with a priority service, a specific information design

may have opposite effects on customers of different classes. Therefore, it would be interesting to

study schemes that provide different information levels for different priority classes.

Another approach to tackle the queue length and abandonment trade-off is to consider a socially

optimal information design, which appropriately balances the conflicting effects of information on

different performance measures and priority classes. This however requires quantifying the relative

impact of waiting time and abandonment for different priority classes.

Our characterizations of the effects of information depend on customers’ perceptions of their

queue positions in the absence of accurate information. These results also suggest that “correcting”

customer perceptions, instead of providing accurate queue information about their queue positions,

may be sufficient for reducing abandonment. Vague delay announcements have have been previously

studied in the context of unobserved (virtual) call center queues, e.g., Allon et al. (2011), Allon

and Bassamboo (2011). Investigating the impact of vague announcements in observable settings,

aimed at influencing customer perceptions, can be an interesting area of future research.

Our results assume that customers in both classes use the same θ function (that maps their

perceived queue positions to individual abandonment rates). As noted in §3, this assumption is not

only for analytical tractability, but also allows us to isolate the interactions between information

granularity and system characteristics, i.e., non-stationary arrival rates and priority service. To

accommodate heterogeneous abandonment behaviors across different classes, one can relax this

assumption. Whether customers in different classes respond differently to their perceived queue

positions, and if so, how, is ultimately an empirical question, and it is certainly worthy of future

research (see below). With respect to the theoretical implications of a model with class-dependent

θ functions, it seems intuitively clear that our results would continue to hold if these functions are

either “not too different”, or if they differ in a way that reinforces the effects that our analysis

identifies; on the other hand, some of our results may be reversed if the θ functions differ in a way

that counters these effects. For instance, as discussed in §6.5 and §6.6, the effect of more information

on the average LP queue length is the net result of two effects (i) HP congestion (more information

yields a longer HP queue) and (ii) LP patience (more information weakly reduces LP customers’

individual abandonment rates for given queue lengths). In this context, if the HP customers have a
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“steeper” θ function than LP customers (e.g., θ′1 > θ
′
2), then this would magnify the HP congestion

effect compared to the LP patience effect; as result, the information level that minimizes the LP

queue may change for certain load regimes.

In addition to modeling extensions, another interesting direction is to investigate the estimation

of the models introduced in this paper from data. Our modeling framework assumes that customers’

abandonment rate is determined through a function (namely, θ) that maps the perceived position

of the customer to an abandonment rate. Estimation of this function using data, which can be

facilitated by imposing additional structure on the function, can be considered in future work.

As noted above, customer perceptions may be estimated through customer experience surveys.

Such estimations can provide insights on the impact of information on abandonment rates and its

heterogeneity between different customer classes.

References
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Appendix A: Proof of Section 4: Theorem 1

In this section, we provide the proof of Theorem 1. We first introduce a useful Functional Strong Law of

Large Numbers from Mandelbaum et al. (1998) in Appendix A.1, and then provide the proof of Theorem 1

for no and full information systems in Appendices A.2 and A.3, respectively.

A.1. Functional Strong Law of Large Numbers

Consider a sequence of stochastic processes Qn := {Qn(t)|t ≥ 0} for n > 0. The sample paths of Qn are

uniquely determined by Qn(0) and the functional equations

Qn(t) = Qn(0) +
∑
i∈I

Ki

(∫ t

0

αns (
1

n
Qn(s), i)ds

)
vi,

where {Ki(·)|i∈ I} is a collection of mutually independent standard Poisson processes indexed by a countable

or countably infinite set I, and are independent of Qn(0), {vi ∈V|i∈ I} for a separable Banach space V with

norm | · | is a collection of vectors such that

∑
i∈I

|vi|<∞, (22)

and {αnt (·, i)|t≥ 0, i∈ I} is a collection of real-valued non-negative Lipschitz function on V that jointly satisfy

‖αnt (·, i)‖ ≤ nβtγ(i) (23)

for some locally integrable function βt and γ(i) ∈R, i∈ I. Note that ‖·‖ is the Lipschitz norm for real-valued

functions on V, i.e.,

‖f‖ := sup
x,y∈V,x 6=y

|f(x)− f(y)|
|x− y|

∨ |f(0)|.

Theorem 3. Theorem 2.2 in Mandelbaum et al. (1998) Assume that (22) and (23) hold. Moreover,

assume that

lim
n→∞

∑
i∈I

∫ t

0

∥∥∥∥αns (·, i)
n

−αs(·, i)
∥∥∥∥ds= 0, (24)

for all t≥ 0, where {αs(·, i)|t≥ 0, i ∈ I} is a collection of Lipschitz function. If {Qn(0)|n> 0} is any family

of random initial state vectors in V, then

lim
n→∞

Qn(0)

n
= Q(0) a.s. implies lim

n→∞

Qn(t)

n
= Q(t) a.s.,

where the convergence is uniform on compact sets in t, and Q is the unique deterministic process {Q(t)|t≥ 0}

that solves the integral equation

Q(t) = Q(0) +

∫ t

0

∑
i∈I

αs(Q(s), i)vids, t≥ 0.
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A.2. Proof of Theorem 1: No Information

We justify the fluid approximation by applying Theorem 3 to the scaled process under no information:

{XN,n(t)/n : t≥ 0}. Let V = R2, I = 1, . . . ,6, Kk =Ak,Kk+2 = Sk,Kk+4 =Nk for k = 1,2, v1 = (1,0)′,v2 =

(0,1)′,v3 = v5 = (−1,0)′,v4 = v6 = (0,−1)′. Then, (22) holds obviously. Moreover, for x= (x1, x2)∈R2, let

αt(x,1) = λ1(t),

αt(x,2) = λ2(t),

αt(x,3) = µ1(x1 ∧ s),

αt(x,4) = µ2

(
(s−x1)+ ∧x2

)
,

αt(x,5) = θ

(
β1(x1 +x2− s)+

s

)
(x1− s)+,

αt(x,6) = θ

(
β2(x1 +x2− s)+

s

)
(x2− (s−x1)+)+,

αnt (x,1) = λn1(t);

αnt (x,2) = λn2(t);

αnt (x,3) = µ1(nx1 ∧ sn);

αnt (x,4) = µ2

(
(sn−nx1)+ ∧nx2

)
;

αnt (x,5) = θ

(
β1(nx1 +nx2− sn)+

sn

)
(nx1− sn)+;

αnt (x,6) = θ

(
β2(nx1 +nx2− sn)+

sn

)
(nx2− (sn−nx1)+)+.

Then, we need to verify the assumptions of 3, i.e., (23)–(24), and αt(x, i) being Lipschitz for i= 1, . . . ,6.

First, we show that αt(x, i) is Lipschitz, i.e., ‖αt(x, i)‖<∞, for i= 1, . . . ,6. Since αt(x,1) and αt(x,2) are

independent of x, the proof is trivial. Recall that | · | is the standard Euclidean norm on R2, then

‖αt(x,3)‖= sup
x,y∈R2

|µ1(y1 ∧ s)−µ1(x1 ∧ s)|
|y−x|

≤ sup
x,y∈R2

µ1|y1−x1|
|y−x|

≤ sup
x,y∈R2

µ1|y1−x1|
|y1−x1|

= µ1.

‖αt(x,4)‖= sup
x,y∈R2

µ2|(s− y1)+ ∧ y2− (s−x1)+ ∧x2|
|y−x|

=: sup
x,y∈R2

L1(x, y).

1. If x1, y1 > s, L1(x, y) = 0.

2. If x1 ≤ s, y1 > s, then

L1(x, y) =
µ2|(s−x1)∧x2|

|y−x|
≤ µ2|(y1−x1)∧x2|

|y−x|
≤ µ2|(y1−x1)|

|y1−x1|
= µ2.

3. If x1 > s,y1 ≤ s, similar to the previous case, we can obtain that L1(x, y)≤ µ2.

4. If x1, y1 ≤ s, then

L1(x, y) =
µ2|(s− y1)∧ y2− (s−x1)∧x2|

|y−x|

=

{
µ2|(s−y1)∧y2−x2|

|y−x| ≤ µ2|y2−x2|
|y2−x2|

= µ2, if x1 +x2 ≤ s;
µ2|(s−y1)∧y2−(s−x1)|

|y−x| ≤ µ2|(s−y1)−(s−x1)|
|y1−x1|

= µ2, if x1 +x2 > s.

Thus, ‖αt(x,4)‖ ≤ µ2 <∞.

‖αt(x,5)‖= sup
x,y∈R2

∣∣∣θ(β1(y1+y2−s)+

s

)
(y1− s)+− θ

(
β1(x1+x2−s)+

s

)
(x1− s)+

∣∣∣
|y−x|

=: sup
x,y∈R2

L2(x, y).

Note that, θ′(x)x≤ θ(x), for x > 0, since θ is increasing and concave. Therefore, θ′(x)x≤M . For x, y ∈R2,

without loss of generality, assume that x1 +x2 ≤ y1 + y2, then

1. If x1, y1 > s,

L2(x, y) =

∣∣θ (β1
y1+y2−s

s

)
(y1− s)− θ

(
β1

x1+x2−s
s

)
(x1− s)

∣∣
|y−x|

≤
∣∣θ (β1

y1+y2−s
s

)
(y1−x1)

∣∣
|y−x|

+

∣∣θ (β1
y1+y2−s

s

)
− θ
(
β1

x1+x2−s
s

)∣∣ (x1− s)
|y−x|

≤ |M(y1−x1)|
|y1−x1|

+

∣∣∣θ′ (β1
x1+x2−s

s

)
y1+y2−x1−x2

s/β1

∣∣∣ (x1 +x2− s)

|y−x|

≤M +M
|y1−x1|+ |y2−x2|

|y−x|
≤M +

√
2M.
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2. If x1 ≤ s, y1 > s,

L2(x, y) =

∣∣θ (β1
y1+y2−s

s

)
(y1− s)

∣∣
|y−x|

≤ M(y1−x1)

|y−x|
≤M.

3. If x1 > s,y1 ≤ s, then similarly we can obtain that L2(x, y)≤M .

4. If x1, y1 ≤ s, then L2(x, y) = 0.

Therefore, ‖αt(x,5)‖ ≤ (1 +
√

2)M <∞.

‖αt(x,6)‖= sup
x,y∈R2

∣∣∣θ(β2(y1+y2−s)+

s

)
(y2− (s− y1)+)+− θ

(
β2(x1+x2−s)+

s

)
(x2− (s−x1)+)+

∣∣∣
|y−x|

=: sup
x,y∈R2

L3(x, y).

For x, y ∈R2, without loss of generality, assume that x1 +x2 ≤ y1 + y2, then

1. If x1, y1 > s,

L3(x, y) =

∣∣θ (β2
y1+y2−s

s

)
y2− θ

(
β2

x1+x2−s
s

)
x2

∣∣
|y−x|

≤
∣∣θ (β2

y1+y2−s
s

)
(y2−x2)

∣∣
|y−x|

+

∣∣θ (β2
y1+y2−s

s

)
− θ
(
β2

x1+x2−s
s

)∣∣x2

|y−x|

≤M +

∣∣∣θ′ (β2
x1+x2−s

s

)
y1+y2−x1−x2

s/β2

∣∣∣ (x1 +x2− s)

|y−x|

≤M +M
|y1−x1|+ |y2−x2|

|y−x|
≤M +

√
2M.

2. If x1 ≤ s, y1 > s,

(a) If x1 +x2 ≤ s, then

L3(x, y) =

∣∣θ (β2
y1+y2−s

s

)
y2

∣∣
|y−x|

≤ M |y1 + y2−x1−x2|
|y−x|

≤
√

2M.

(b) If x1 +x2 > s, then

L3(x, y) =

∣∣θ (β2
y1+y2−s

s

)
y2− θ

(
β2

x1+x2−s
s

)
(x1 +x2− s)

∣∣
|y−x|

≤
∣∣θ (β2

y1+y2−s
s

)
(y1 + y2− s)− θ

(
β2

x1+x2−s
s

)
(x1 +x2− s)

∣∣
|y−x|

≤
∣∣θ (β2

y1+y2−s
s

)
(y1 + y2−x1−x2)

∣∣
|y−x|

+

∣∣θ (β2
y1+y2−s

s

)
− θ
(
β2

x1+x2−s
s

)∣∣ (x1 +x2− s)
|y−x|

≤ 2M
|y1−x1|+ |y2−x2|

|y−x|
≤ 2
√

2M.

3. If x1 > s,y1 ≤ s, then y1 + y2 > s, and

L3(x, y) =

∣∣θ (β2
y1+y2−s

s

)
(y1 + y2− s)− θ

(
β2

x1+x2−s
s

)
x2

∣∣
|y−x|

≤
∣∣θ (β2

y1+y2−s
s

)
y2− θ

(
β2

x1+x2−s
s

)
x2

∣∣
|y−x|

≤
√

2M.

4. If x1, y1 ≤ s,

(a) If x1 +x2 > s, then

L3(x, y) =

∣∣θ (β2
y1+y2−s

s

)
(y1 + y2− s)− θ

(
β2

x1+x2−s
s

)
(x1 +x2− s)

∣∣
|y−x|

≤ 2
√

2M.
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(b) If x1 +x2 ≤ s, y1 + y2 > s, then

L3(x, y) =

∣∣θ (β2
y1+y2−s

s

)
(y1 + y2− s)

∣∣
|y−x|

≤M |y1 + y2−x1−x2|
|y−x|

≤
√

2M.

(c) If y1 + y2 ≤ s, then L3(x, y) = 0.

Thus, ‖αt(x,6)‖ ≤ 2
√

2M <∞.
Using a similar analysis, we can obtain that

αnt (x,i)

n
is Lipschitz (i.e., ‖αnt (x, i)‖ ≤ nM∗ for some constant

M∗ <∞) for i= 1, . . . ,6.

Lastly, we prove equation (24). For i= 1,2, since λni (t)/n→ λi(t) is bounded, by the dominated convergence

theorem we have

lim
n→∞

∫ t

0

∥∥∥∥αnu(x, i)

n
−α(x, i)

∥∥∥∥du= lim
n→∞

∫ t

0

∥∥∥∥λni (t)

n
−λi(t)

∥∥∥∥du= 0.

For i= 4, . . . ,6, αnt (·, i) are independent of t, thus it is sufficient to prove that limn→∞

∥∥∥αnt (x,i)

n
−α(x, i)

∥∥∥= 0.

Since sn/n→ s, we have limn→∞
∥∥ sn
n
− s
∥∥= 0. Moreover, αnt (x, i) and α (x, i) are continuous functions of x

with limn→∞
αnt (x,i)

n
= α(x, i) for i= 4, . . . ,6. Therefore, limn→∞

∥∥∥αnt (x,i)

n
−α(x, i)

∥∥∥= 0, for i= 4, . . . ,6.

Apply Theorem 3 we can obtain the desired results.

A.3. Proof of Theorem 1: Full Information

For full information system, the proof is similar to the no information case except that now

αt(x,5) =

∫ (x1−s)+

0

θ
(u
s

)
du,

αt(x,6) =

∫ (x1+x2−s)+

(x1−s)+

θ
(u
s

)
du,

αnt (x,5) =

bnx1−snc+∑
i=1

θ

(
i

sn

)
;

αnt (x,6) =

bnx1+nx2−snc+∑
i=bnx1−snc++1

θ

(
i

sn

)
,

where bxc is the floor of x. Therefore, to apply Theorem 3, we just need to verify (23)–(24), and αt(x, i)

being Lipschitz for i= 5,6.

First, we prove that αt(x, i) is Lipschitz for i= 5,6. Note that,

‖αt(x,5)‖= sup
x,y∈R2

∣∣∣∫ (y1−s)+

0
θ
(
u
s

)
du−

∫ (x1−s)+

0
θ
(
u
s

)
du
∣∣∣

|y−x|

= sup
x,y∈R2

∣∣∣∫ (y1−s)+

(x1−s)+ θ
(
u
s

)
du
∣∣∣

|y−x|
≤ sup
x,y∈R2

M |y1−x1|
|y−x|

≤M <∞.

‖αt(x,6)‖= sup
x,y∈R2

∣∣∣∫ (y1+y2−s)+

(y1−s)+ θ
(
u
s

)
du−

∫ (x1+x2−s)+

(x1−s)+ θ
(
u
s

)
du
∣∣∣

|y−x|

= sup
x,y∈R2

∣∣∣∫ (y1+y2−s)+

(x1+x2−s)+ θ
(
u
s

)
du−

∫ (y1−s)+

(x1−s)+ θ
(
u
s

)
du
∣∣∣

|y−x|

≤ sup
x,y∈R2

M |y1 + y2−x1−x2|
|y−x|

+
M |y1−x1|
|y−x|

≤ (1 +
√

2)M <∞.

Next, we show that (23) hold, i.e., ‖αnt (x, i)‖ is Lipschitz, for i= 5,6. Note that for a≥ 0, na− sn − 1≤
bna− snc ≤ na− sn, which implies that 1

n
bna− snc→ a− s as n→∞. Thus, for x, y ∈R,

bny− snc− bnx− snc
n(y−x)

→ 1 as n→∞.
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Then there exists a constant n1 such that for n≥ n1,

bny− snc− bnx− snc
n(y−x)

≤ 2.

Similarly, we can find a constant n2 such that for n≥ n2,

bny−nxc
n(y−x)

≤ 2.

For y > x≥ 0, n≥ n∗ := max{n1, n2},

(
bny− snc+−bnx− snc+

)+
=


bny− snc− bnx− snc ≤ 2n(y−x) if y > x> sn

n
,

bny− snc ≤ bny−nxc ≤ 2n(y−x) if y > sn

n
≥ x,

0 otherwise.

That is, for x, y ∈R, n≥ n∗, we have(
bny− snc+−bnx− snc+

)+ ≤ 2n|y−x|.

Therefore,

‖αnt (x,5)‖= sup
x,y∈R2

∣∣∣∑bny1−snc+

i=1 θ
(
i
sn

)
−
∑bnx1−snc+

i=1 θ
(
i
sn

)∣∣∣
|y−x|

≤ sup
x,y∈R2

M (bny1− snc+−bnx1− snc+)
+

|y−x|
≤ sup
x,y∈R2

nM |y1−x1|
|y−x|

≤ nM.

‖αnt (x,6)‖= sup
x,y∈R2

∣∣∣∑bny1+ny2−snc+

i=bny1−snc++1 θ
(
i
sn

)
−
∑bnx1+nx2−snc+

i=bnx1−snc++1 θ
(
i
sn

)∣∣∣
|y−x|

= sup
x,y∈R2

∣∣∣∑bny1+ny2−snc+

i=bnx1+nx2−snc++1 θ
(
i
sn

)
−
∑bny1−snc+

i=bnx1−snc++1 θ
(
i
sn

)∣∣∣
|y−x|

≤ sup
x,y∈R2

M (bny1 +ny2− snc+−bnx1 +nx2− snc+)
+

|y−x|
+
M (bny1− snc+−bnx1− snc+)

+

|y−x|

≤ sup
x,y∈R2

nM |y1 + y2−x1−x2|
|y−x|

+
nM |y1−x1|
|y−x|

≤ n(1 +
√

2)M.

Lastly, we show (24), i.e., the convergence of
αnt (x,i)

n
to αt(x, i), for i= 5,6. To do so, we first prove the

following useful equation:

1

n

bnx−snc+∑
i=1

θ

(
i

sn

)
→
∫ (x−s)+

0

θ
(u
s

)
du,∀x∈R. (25)

Indeed, since sn

n
≤ s, we have bnx− snc+ ≥ bsn

(
x−s
s

)
c+ and

1

n

bnx−snc+∑
i=1

θ

(
i

sn

)
=
sn

n

∑
x∈Pn

1

sn
θ(x) +

1

n

∑
x∈Qn

θ(x),

where

Pn = { i
sn
|i∈Z,0≤ i < sn

(
x− s
s

)+

}= { i
sn
|i∈Z,0≤ i≤

⌊
sn
(
x− s
s

)⌋+

},

Qn = { i
sn
|i∈Z, sn

(
x− s
s

)+

≤ i≤ bnx− snc+}= { i
sn
|i∈Z,

⌈
sn
(
x− s
s

)⌉+

≤ i≤ bnx− snc+}.
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Note that,

lim
n→∞

|Qn|
n

= lim
n→∞

bnx− snc+− sn
(
x−s
s

)+
n

≤ lim
n→∞

(nx− sn)
+− sn

(
x−s
s

)+
n

= lim
n→∞

sn

n

(
x

sn/n
− 1

)+

− lim
n→∞

sn

n

(
x− s
s

)+

= 0.

Therefore,
1

n

∑
x∈Qn

θ(x)≤ M |Qn|
n

→ 0.

Moreover, by the convergence of the Riemann sum, we can obtain that:

sn

n

∑
x∈Pn

1

sn
θ(x) + θ

((
x− s
s

)+
)((

x− s
s

)+

−

(
1

sn

⌊
sn
(
x− s
s

)⌋+
))
→ s

∫ (x−s)+
s

0

θ(u)du. (26)

Noting that the second term on the left of (26) converges to 0 as n→∞. Thus,

1

n

bnx−snc+∑
i=1

θ

(
i

sn

)
→ s

∫ (x−s)+
s

0

θ(u)du=

∫ (x−s)+

0

θ
(u
s

)
du.

By equation (25), we can obtain that
αnt (x,5)

n
→ αt(x,5), and

αnt (x,5)

n
+

αnt (x,6)

n
→ αt(x,5) + αt(x,6), which

further implies that
αnt (x,6)

n
→ αt(x,6). The proof is complete. �

Appendix B: Stability Theorems and Proofs for Section 5

In this appendix, we present the proofs of results in Section 5. Specifically, we introduce the concepts and

theorems we use for the proofs of Proposition 1 and Theorem 2 in Appendices B.1 and B.3; and provide the

proofs of these two propositions in Appendices B.2 and B.4, respectively.

B.1. Pre-requisites for the Proof of Proposition 1

In this section, we introduce concepts and theorems we use for the existence proof of periodic equilibrium in

Proposition 1. We first obtain the definition and property of the Poincaré map.

Definition 4. Consider a single differential equation ẋ= f(t, x) and assume that f(t, x) is periodic in t

with period T , for x∈R. The Poincaré map associated with ẋ= f(t, x) is the map φ(x0) = x1, where x(t)

is the solution of the ODE with x(0) = x0, x1 = x(T ).

The Poincaré map is monotone as shown in the following proposition.

Proposition 9. Let φ : J → R be the Poincaré map for ẋ = f(t, x), where J is an interval. Then, for

a, b∈ J , we have a< b⇒ φ(a)<φ(b).

The next theorem provides conditions for the existence of fixed point of a function.

Theorem 4 (One-dimensional Brouwer fixed-point theorem). Every continuous function from a

closed interval into itself has a fixed point.

The following theorem gives a set of conditions under which an initial value problem has a unique solution.

Theorem 5 (Picard’s existence theorem). Consider the initial value problem ẋ= f(t, x), x(t0) = x0.

Suppose f(t, x) is uniformly Lipschitz continuous in x and continuous in t, then for some value ε > 0, there

exists a unique solution x to the initial value problem on the interval [t0− ε, t0 + ε].
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B.2. Proof of Proposition 1

We use notation ↑ for increasing and convergence, i.e., sn/n ↑ s. We start from the no information case, i.e., I =

N . We begin with a single-class version of the original theorem. That is, we show that if there exist a solution

xN(t) ∈ R to the following one-dimensional ordinary differential equation such that lim supt→∞ x
N(t)<∞,

then there exist a periodic solution with the same period as λ(t):

ẋ(t) = λ(t)−µ(x(t)∧ s)− θ
(
β(x(t)− s)+

s

)
(x(t)− s)+ = fN(t, x), (27)

where λ(t+ d) = λ(t) for some d > 0. Note that, fN(t, x) is periodic in t with period d, i.e., for a given x,

fN(t, x) = fN(t+ d,x).

First, we show that any solution to (27) starting from a finite initial condition is bounded. Note that,

when x(t)> s, fN(t, x) = λ(t)− µs− θ
(
β x(t)−s

s

)
(x(t)− s). Since λ(t) is bounded and θ

(
β x−s

s

)
(x− s) ↑∞

as x→∞, then there exist a x̂ such that θ
(
β x̂−s

s

)
(x̂− s) = maxt≥0 λ(t)− µs, and fN(t, x)≤ 0 for ∀x≥ x̂.

Therefore, x(t)≤max{x̂, s}<∞.

Next, let x(t, ξ) be the solution to (27) with x(0) = ξ ≥ 0. Then, (27) has a periodic solution with period d

if, for every t, x(t+d, ξ) = x(t, ξ). Note that x(t+d, ξ) = x(t, x(d, ξ)). Thus, it suffices to show that ξ = x(d, ξ).

We define the Poincaré map associated with the ODE as follows:

φ(ξ) = x(d, ξ).

Then, showing that ξ = x(d, ξ) amounts to showing that ξ is a fixed point of φ(·). First, note that φ(·)

is a continuous function. We can obtain this continuous dependence on the initial conditions by applying

Theorem 6.3.1 in Lebovitz (1999) since fN(t, x) is Lipschitz.

Thus, by Theorem 4, to show that φ(·) has a fixed point, it suffices to show that there exists a finite closed

interval [ξ1, ξ2] such that φ([ξ1, ξ2])⊂ (ξ1, ξ2).

Define

ξ1 := inf{x(kd), k ∈N}

and

ξ2 := sup{x(kd), k ∈N}.

Then, by our previous analysis, we have that ξ1, ξ2 <∞. If ξ1 = ξ2, then x(t) is a constant, and so it is itself

a periodic solution. If ξ1 < ξ2, then for ξ ∈ (ξ1, ξ2), there exist k1, k2 such that

x(k1d)< ξ < x(k2d).

Thus, by the monotonicity of the Poincaré map, i.e., Proposition 9:

φ(ξ) = x(d, ξ)<x(d,x(k2d)) = x(d+ k2d,x(0)) = x((k2 + 1)d)≤ ξ2.

We can also show that φ(ξ)≥ ξ1 as follows:

φ(ξ) = x(d, ξ)>x(d,x(k1d)) = x(d+ k1d,x(0)) = x((k1 + 1)d)≥ ξ1.
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Thus, ξ1 ≤ φ(ξ)≤ ξ2. By the continuity of φ(·), it follows that

φ([ξ1, ξ2])⊂ (ξ1, ξ2),

which completes the proof. That is, there exist a periodic solution with period d to (27).

We note that fN(t, x) is uniformly (in t) Lipschitz continuous in x, so that the periodic solution to (27),

which we refer to as x̃(t), must be unique by Theorem 5, i.e., the Picard’s existence theorem.

Now, we go back to the two-dimensional system of ordinary differential equations (7) and (8). For any

solution (xN1 (t), xN2 (t)) of (7) and (8) such that xN1 (0) +xN2 (0) = x̃0(0), let λ(t) = λ1(t) +λ2(t), then xN0 (t) =

xN1 (t) + xN2 (t) is a solution to (27). Moreover, since the unique solution to (27) with initial condition x̃0(0)

is x̃0(t), we must have xN0 (t) = x̃0(t). That is, any solution x(t) of (7) and (8) with initial conditions sum up

to x̃0(0) must satisfy x1(t) +x2(t) = x̃0(t).

Now, consider (7) with x̃0(t) plugged in, i.e.,

ẋ1(t) = λ1(t)−µ(x1(t)∧ s)− θ
(
β(x̃0(t)− s)+

s

)
(x1(t)− s)+. (28)

Recall that λ(t) is periodic with period d, thus x̃0(t) is also periodic with period d, regard x̃0(t) as given

and using a similar analysis to (28) as we find x̃0(t) in the first step, it must be that there exists a solution

x̃1(t) to (28) which is periodic with period d. Let x̃2(t) be a solution to (7) and (8) with initial condition

x̃2(0) = x̃0(0)− x̃1(0), then we must have x̃2(t) = x̃0(t)− x̃1(t). Since both x̃0(t) and x̃1(t) are periodic in d,

x̃2(t) is also periodic in d, and the result follows.

For the full information case, by (7), (9), and the one-dimensional proof above, we can obtain the unique

periodic solution with period d1. Denote the solution as x̃I1, and plug into (8), for I = F . Then, the result

follows from a similar argument as the last part of the proof for I =N . �

B.3. Stability Theorem for Time-Varying System

Theorem 6. Theorem 4.3 in Khalil (2014) Let y = (0,0) be an equilibrium point for (11)–(12), and

V : [0,∞)×R2→R be a continuous differentiable function such that

W1(y)≤ V (t, y)≤W2(y), (29)

∂V

∂t
+
∂V

∂y
g(t, y)≤−W3(y), for ∀t≥ 0,∀y ∈R2, (30)

where Wi(y) are continuous positive definite functions on R2 for i= 1,2,3. If W1(y) is radially unbounded,

then y= (0,0) is globally uniformly asymptotically stable.

Note that, a function f(y) : R2→R is radially unbounded if |y| →∞⇒ f(y)→∞.

B.4. Proof of Theorem 2

We prove this theorem using Theorem 6. We show the proof for I =N , and the case for I = F is similar to

this case, so we omit it for brevity.

To apply Theorem 6, we need to find a continuous differentiable function V (t, y) and continuous positive

definite functions Wi(y1, y2) for i= 1,2,3, such that equations (29) and (30) are satisfied for t≥ 0, x̃N(t) ∈

R2
+, y ∈R2 such that x̃N + y ∈R2

+.
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Let

V (t, y) =W1(y) =W2(y) =
1

2
y2

1 +
1

2
(y1 + y2)2.

Then, (29) always holds, and it is clear that W1(y) is radially unbounded. Let

W3(y) = min{θ(0), µ}y2
1 + min{θ(0), µ}(y1 + y2)2.

The only thing left is to show that (30) holds, i.e.,

V̇ (y) = y1g̃
N
1 (y) + (y1 + y2)(g̃N1 (y) + g̃N2 (y))≤−W3(y).

By system of equations (7) and (8) we can obtain that

g̃N1 (y) = µ1(x̃N1 (t)∧ s)−µ1((x̃N1 (t) + y1)∧ s)

+ θ

(
β(x̃N1 (t) + x̃N2 (t)− s)+

s

)
(x̃N1 (t)− s)+

− θ
(
β(x̃N1 (t) + x̃N2 (t) + y1 + y2− s)+

s

)
(x̃N1 (t) + y1− s)+,

g̃N2 (y) = µ2((s− x̃N1 (t))+ ∧ x̃N2 (t))−µ2((s− x̃N1 (t)− y1)+ ∧ (x̃N2 (t) + y2))

+ θ

(
β(x̃N1 (t) + x̃N2 (t)− s)+

s

)
(x̃N2 (t)− (s− x̃N1 (t))+)+

− θ
(
β(x̃N1 (t) + x̃N2 (t) + y1 + y2− s)+

s

)
(x̃N2 (t) + y2− (s− x̃N1 (t)− y1)+)+.

For (y1, y2) 6= (0,0), we show (30) by cases as follows:

1. When x̃N1 (t) + x̃N2 (t)≤ s, x̃N1 (t) + x̃N2 (t) + y1 + y2 ≤ s, x̃N1 (t) + y1 ≤ s, then

g̃N1 (y) =−µy1, g̃N2 (y) =−µy2.

Thus,

V̇ (y) =−µy2
1 −µ(y1 + y2)2 ≤−W3(y).

2. When x̃N1 (t) + x̃N2 (t)≤ s, x̃N1 (t) + x̃N2 (t) + y1 + y2 > s, x̃
N
1 (t) + y1 ≤ s, then y1 + y2 > 0, and

g̃N1 (y) =−µy1,

g̃N2 (y) = µ(x̃N1 (t) + x̃N2 (t) + y1− s)

− θ
(
β
x̃N1 (t) + x̃N2 (t) + y1 + y2− s

s

)
(x̃N1 (t) + x̃N2 (t) + y1 + y2− s).

Then,

(y1 + y2)(g̃N1 (y) + g̃N2 (y))

= (y1 + y2)(µ(x̃N1 (t) + x̃N2 (t)− s)− θ
(
β
x̃N1 (t) + x̃N2 (t) + y1 + y2− s

s

)
(x̃N1 (t) + x̃N2 (t) + y1 + y2− s))

≤ (y1 + y2)(µ(x̃N1 (t) + x̃N2 (t)− s)− θ(0)(x̃N1 (t) + x̃N2 (t) + y1 + y2− s))

= (y1 + y2)(µ− θ(0))(x̃N1 (t) + x̃N2 (t)− s)− θ(0)(y1 + y2)2

≤

{
−(y1 + y2)2(µ− θ(0))− θ(0)(y1 + y2)2 =−µ(y1 + y2)2 if θ(0)≥ µ
−θ(0)(y1 + y2)2 if θ(0)<µ

=−min{θ(0), µ}(y1 + y2)2.

Thus,

V̇ (y)≤−µy2
1 −min{θ(0), µ}(y1 + y2)2 ≤−W3(y).
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3. When x̃N1 (t) + x̃N2 (t)≤ s, x̃N1 (t) + x̃N2 (t) + y1 + y2 > s, x̃
N
1 (t) + y1 > s, then y1 > 0, and

g̃N1 (y) = µ(x̃N1 (t)− s)− θ
(
β
x̃N1 (t) + x̃N2 (t) + y1 + y2− s

s

)
(x̃N1 (t) + y1− s),

g̃N2 (y) = µx̃N2 (t)− θ
(
β
x̃N1 (t) + x̃N2 (t) + y1 + y2− s

s

)
(x̃N2 (t) + y2).

Note that, by a similar analysis as the previous cases, we can obtain that

y1g̃
N
1 (y)≤ (s− x̃N1 (t))(µ− θ(0))y1− θ(0)y2

1

≤−min{θ(0), µ}y2
1 .

(y1 + y2)(g̃N1 (y) + g̃N2 (y))≤ (y1 + y2)(µ− θ(0))(x̃N1 (t) + x̃N2 (t)− s)− θ(0)(y1 + y2)2

≤−min{θ(0), µ}(y1 + y2)2.

Thus,

V̇ (y)≤−min{θ(0), µ}y2
1 −min{θ(0), µ}(y1 + y2)2 =−W3(y).

4. When x̃N1 (t) + x̃N2 (t)> s, x̃N1 (t)≤ s, x̃N1 (t) + x̃N2 (t) + y1 + y2 ≤ s, x̃N1 (t) + y1 ≤ s, then y1 + y2 < 0, and

g̃N1 (y) =−µy1,

g̃N2 (y) =−µ(x̃N1 (t) + x̃N2 (t) + y2− s) + θ

(
β
x̃N1 (t) + x̃N2 (t)− s

s

)
(x̃N1 (t) + x̃N2 (t)− s).

Then,

(y1 + y2)(g̃N1 (y) + g̃N2 (y))≤−µ(y1 + y2)2 + (y1 + y2)(θ(0)−µ)(x̃N1 (t) + x̃N2 (t)− s)

≤−min{θ(0), µ}(y1 + y2)2.

Thus,

V̇ (y)≤−µy2
1 −min{θ(0), µ}(y1 + y2)2 ≤−W3(y).

5. When x̃N1 (t) + x̃N2 (t)> s, x̃N1 (t)≤ s, x̃N1 (t) + x̃N2 (t) + y1 + y2 > s, x̃
N
1 (t) + y1 ≤ s, then

g̃N1 (y) =−µy1,

g̃N2 (y) = µy1 + θ

(
β
x̃N1 (t) + x̃N2 (t)− s

s

)
(x̃N1 (t) + x̃N2 (t)− s)

− θ
(
β
x̃N1 (t) + x̃N2 (t) + y1 + y2− s

s

)
(x̃N1 (t) + x̃N2 (t) + y1 + y2− s).

Then,

(y1 + y2)(g̃N1 (y) + g̃N2 (y))

≤ (y1 + y2)

((
θ

(
β
x̃N1 (t) + x̃N2 (t)− s

s

)
− θ
(
β
x̃N1 (t) + x̃N2 (t) + y1 + y2− s

s

))
(x̃N1 (t) + x̃N2 (t)− s)

)
− θ(0)(y1 + y2)2

≤−θ(0)(y1 + y2)2.

Thus,

V̇ (y)≤−µy2
1 − θ(0)(y1 + y2)2 ≤−W3(y).
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6. When x̃N1 (t) + x̃N2 (t)> s, x̃N1 (t)≤ s, x̃N1 (t) + x̃N2 (t) + y1 + y2 > s, x̃
N
1 (t) + y1 > s, then y1 > 0, and

g̃N1 (y) = µ(x̃N1 (t)− s)− θ
(
β
x̃N1 (t) + x̃N2 (t) + y1 + y2− s

s

)
(x̃N1 (t) + y1− s),

g̃N2 (y) = µ(s− x̃N1 (t)) + θ

(
β
x̃N1 (t) + x̃N2 (t)− s

s

)
(x̃N1 (t) + x̃N2 (t)− s)

− θ
(
β
x̃N1 (t) + x̃N2 (t) + y1 + y2− s

s

)
(x̃N2 (t) + y2)+.

Then,

y1g̃
N
1 (y)≤(µ− θ(0))(x̃N1 (t)− s)y1− θ(0)y2

1 ≤−min{µ, θ(0)}y2
1 .

(y1 + y2)(g̃N1 (y) + g̃N2 (y)) = (y1 + y2)

(
θ

(
β
x̃N1 (t) + x̃N2 (t)− s

s

)
(x̃N1 (t) + x̃N2 (t)− s)

− θ
(
β
x̃N1 (t) + x̃N2 (t) + y1 + y2− s

s

)
(x̃N1 (t) + x̃N2 (t) + y1 + y2− s)

)
≤−θ(0)(y1 + y2)2.

Thus,

V̇ (y)≤−min{µ, θ(0)}y2
1 − θ(0)(y1 + y2)2 ≤−W3(y).

7. When x̃N1 (t)> s, x̃N1 (t) + x̃N2 (t) + y1 + y2 ≤ s, x̃N1 (t) + y1 ≤ s, then y1 < 0, y1 + y2 < 0, and

g̃N1 (y) = µ(s− x̃N1 (t)− y1) + θ

(
β
x̃N1 (t) + x̃N2 (t)− s

s

)
(x̃N1 (t)− s),

g̃N2 (y) =−µ(x̃N2 (t) + y2) + θ

(
β
x̃N1 (t) + x̃N2 (t)− s

s

)
x̃N2 (t).

Then,

y1g̃
N
1 (y)≤ (θ(0)−µ)(x̃N1 (t)− s)y1−µy2

1 ≤−min{µ, θ(0)}y2
1 .

(y1 + y2)(g̃N1 (y) + g̃N2 (y)) =−µ(y1 + y2)2 + (y1 + y2)

(
θ

(
β
x̃N1 (t) + x̃N2 (t)− s

s

)
−µ
)

(x̃N1 (t) + x̃N2 (t)− s)

≤−min{µ, θ(0)}(y1 + y2)2.

Thus,

V̇ (y)≤−min{µ, θ(0)}y2
1 −min{µ, θ(0)}(y1 + y2)2 =−W3(y).

8. When x̃N1 (t)> s, x̃N1 (t) + x̃N2 (t) + y1 + y2 > s, x̃
N
1 (t) + y1 ≤ s, then y1 < 0, and

g̃N1 (y) = µ(s− x̃N1 (t)− y1) + θ

(
β
x̃N1 (t) + x̃N2 (t)− s

s

)
(x̃N1 (t)− s),

g̃N2 (y) =−µ(s− x̃N1 (t)− y1) + θ

(
β
x̃N1 (t) + x̃N2 (t)− s

s

)
x̃N2 (t)

− θ
(
β
x̃N1 (t) + x̃N2 (t) + y1 + y2− s

s

)
(x̃N1 (t) + x̃N2 (t) + y1 + y2− s).

Then,

y1g̃
N
1 (y)≤ (θ(0)−µ)(x̃N1 (t)− s)y1−µy2

1 ≤−min{µ, θ(0)}y2
1 .
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(y1 + y2)(g̃N1 (y) + g̃N2 (y)) = (y1 + y2)

(
θ

(
β
x̃N1 (t) + x̃N2 (t)− s

s

)
(x̃N1 (t) + x̃N2 (t)− s)

− θ
(
β
x̃N1 (t) + x̃N2 (t) + y1 + y2− s

s

)
(x̃N1 (t) + x̃N2 (t) + y1 + y2− s)

)
≤−θ(0)(y1 + y2)2.

Thus,

V̇ (y)≤−min{µ, θ(0)}y2
1 − θ(0)(y1 + y2)2 ≤−W3(y).

9. When x̃N1 (t)> s, x̃N1 (t) + x̃N2 (t) + y1 + y2 > s, x̃
N
1 (t) + y1 > s,

g̃N1 (y) = θ

(
β
x̃N1 (t) + x̃N2 (t)− s

s

)
(x̃N1 (t)− s)

− θ
(
β
x̃N1 (t) + x̃N2 (t) + y1 + y2− s

s

)
(x̃N1 (t) + y1− s),

g̃N2 (y) = θ

(
β
x̃N1 (t) + x̃N2 (t)− s

s

)
x̃N2 (t)− θ

(
β
x̃N1 (t) + x̃N2 (t) + y1 + y2− s

s

)
(x̃N2 (t) + y2).

(a) If y1(y1 + y2)≥ 0,

y1g̃
N
1 (y)≤

(
θ

(
β
x̃N1 (t) + x̃N2 (t)− s

s

)
− θ
(
β
x̃N1 (t) + x̃N2 (t) + y1 + y2− s

s

))
(x̃N1 (t)− s)y1− θ(0)y2

1

≤−θ(0)y2
1 .

(y1 + y2)(g̃N1 (y) + g̃N2 (y)) = (y1 + y2)

(
θ

(
β
x̃N1 (t) + x̃N2 (t)− s

s

)
(x̃N1 (t) + x̃N2 (t)− s)

− θ
(
β
x̃N1 (t) + x̃N2 (t) + y1 + y2− s

s

)
(x̃N1 (t) + x̃N2 (t) + y1 + y2− s)

)
≤−θ(0)(y1 + y2)2.

Thus,

V̇ (y)≤−θ(0)y2
1 − θ(0)(y1 + y2)2 ≤−W3(y).

(b) If y1(y1 + y2)< 0, then

V̇ (y) = y1g̃
N
1 (y) + (y1 + y2)(g̃N1 (y) + g̃N2 (y))

= θ

(
β
x̃N1 (t) + x̃N2 (t)− s

s

)
(y1(x̃N1 (t)− s) + (y1 + y2)(x̃N1 (t) + x̃N2 (t)− s))

− θ
(
β
x̃N1 (t) + x̃N2 (t) + y1 + y2− s

s

)
(y1(x̃N1 (t) + y1− s) + (y1 + y2)(x̃N1 (t) + x̃N2 (t) + y1 + y2− s))

=

(
θ

(
β
x̃N1 (t) + x̃N2 (t)− s

s

)
− θ
(
β
x̃N1 (t) + x̃N2 (t) + y1 + y2− s

s

))
× (y1(x̃N1 (t)− s) + (y1 + y2)(x̃N1 (t) + x̃N2 (t)− s))

− θ
(
β
x̃N1 (t) + x̃N2 (t) + y1 + y2− s

s

)
(y2

1 + (y1 + y2)2).

i. If 2y1 + y2 ≤ 0, then

V̇ (y)≤
(
θ

(
β
x̃N1 (t) + x̃N2 (t)− s

s

)
− θ
(
β
x̃N1 (t) + x̃N2 (t) + y1 + y2− s

s

))
(x̃N1 (t) + x̃N2 (t)− s)(2y1 + y2)

− θ(0)(y2
1 + (y1 + y2)2)

≤ θ(0)(y2
1 + (y1 + y2)2)≤−W3(y).
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ii. If 2y1 + y2 > 0, then

V̇ (y)≤
(
θ

(
β
x̃N1 (t) + x̃N2 (t)− s

s

)
− θ
(
β
x̃N1 (t) + x̃N2 (t) + y1 + y2− s

s

))
× (y1(x̃N1 (t) + x̃N2 (t) + y1 + y2− s) + (y1 + y2)(x̃N1 (t) + x̃N2 (t)− s))

−
(
θ

(
β
x̃N1 (t) + x̃N2 (t) + y1 + y2− s

s

)
− θ(0)

)
(y2

1 + (y1 + y2)2)− θ(0)(y2
1 + (y1 + y2)2)

≤ θ′
(
β
x̃N1 (t) + x̃N2 (t) + y1 + y2− s

s

)
(−β y1 + y2

s
)

× (y1(x̃N1 (t) + x̃N2 (t) + y1 + y2− s) + (y1 + y2)(x̃N1 (t) + x̃N2 (t)− s))

− θ′
(
β
x̃N1 (t) + x̃N2 (t) + y1 + y2− s

s

)(
β
x̃N1 (t) + x̃N2 (t) + y1 + y2− s

s

)
(y2

1 + (y1 + y2)2)−W3(y)

= θ′
(
β
x̃N1 (t) + x̃N2 (t) + y1 + y2− s

s

)(
β
x̃N1 (t) + x̃N2 (t) + y1 + y2− s

s

)
(−y1(y1 + y2)− y2

1 − (y1 + y2)2)

− θ′
(
β
x̃N1 (t) + x̃N2 (t) + y1 + y2− s

s

)(
β
x̃N1 (t) + x̃N2 (t)− s

s

)
(y1 + y2)2−W3(y)

≤−θ′
(
β
x̃N1 (t) + x̃N2 (t) + y1 + y2− s

s

)(
β
x̃N1 (t) + x̃N2 (t) + y1 + y2− s

s

)(
3y2

1 + 3y1y2 + y2
2

)
−W3(y)

≤−W3(y).

Note that we used above the fact that:

A. When y1(y1 + y2) < 0, we have x̃N2 (t) + y1 + y2 ≥ 0. In particular, if y1 > 0, y1 + y2 < 0, then

x̃N2 (t) + y1 + y2 ≥ x̃N2 (t) + y2 ≥ 0; if y1 < 0, y1 + y2 > 0, then x̃N2 (t) + y1 + y2 ≥ x̃N2 (t)≥ 0.

B. For concave and and differentiable function θ and a, b∈R, we have θ(b)≤ θ(a) + θ′(a)(b− a).

C. 3y2
1 + 3y1y2 + y2

2 = 3(y1 + 1
2
y2)2 + 1

4
y2

2 ≥ 0.

�

Appendix C: Proofs and Supplementary Results for Section 6

In this appendix, we provide the proofs and supplementary results for Section 6. In particular, in Appendices

C.1 and C.2, we present concepts and theorems that facilitate the proofs in this section; in Appendices

C.3–C.5, we provide the proofs for Sections 6.4–6.6, respectively.

C.1. Comparison Theorems of Ordinary Differential Equations

The following lemmas are useful for the comparison of the trajectories of the fluid model xI(t) under different

information levels.

Lemma 1. Proposition 6.4 in Bagagiolo (2012) Let f, g :A→R,A⊆R2 open, be Lipschitz continuous

in x, such that f(t, x)≤ g(t, x),∀(t, x)∈A. Then, if y, z : I→R are, respectively, the solutions of the following

two initial value problems:

y′(t) = f(t, y), y(t0) = y0,

z′(t) = g(t, z), z(t0) = z0,

where y0 ≤ z0 and I is the common interval of existence, then y(t)≤ z(t) for t∈ I, t≥ t0.
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Lemma 2. Strong Comparison Theorem in McNabb (1986) Suppose y(t), z(t) are continuous on

[a, b] and differentiable on (a, b], f is a continuous mapping from R × R → R that satisfies a Lipschitz

condition, and

y(a)> z(a),
dy

dt
− f(t, y)≥ dz

dt
− f(t, z) on (a, b].

Then y > z on [a, b].

In the proofs we will rely on the following application of Lemma 2: Letting f(t, y) = dy/dt, g(t, z) = dz/dt,

a= t0, and b= t0 + d, then Lemma 2 implies that:

y(t0)> z(t0) and f(t, z)≥ g(t, z)⇒ y(t)> z(t) ∀t∈ [t0, t0 + d]. (31)

C.2. Continuity of xI(t) on parameters

Recall that f Ik (t, x̃I(t)) is the net flow rate of class k customers under information level I at time t in

equilibrium, which depends on the arrival rates λk(t). We obtain the continuity of x̃I(t) with respect to λk(t)

using the following theorem, and the continuity result is given in Corollary 1.

Before we proceed, we introduce the class of p-norms || · ||p for a vector x∈R in below:

||x||p := (|x1|p + . . .+ |xn|p)1/p, 1≤ p <∞,

and

||x||∞ := max
i
|xi|.

Theorem 7. (Theorem 3.4 in Khalil (2002)) Let f(t, x) be piecewise continuous in t and Lipschitz in x

on [t0, t1]×W with a Lipschitz constant L, where W ⊂ Rn is an open connected set. Let y(t) and z(t) be

solutions of

ẏ= f(t, y), y(t0) = y0

and

ż = f(t, z) + g(t, z), z(t0) = z0

such that y(t), z(t)∈W for all t∈ [t0, t1]. Suppose that

||g(t, x)||p ≤ σ, ∀(t, x)∈ [t0, t1]×W

for some σ > 0 and any p-norm. Then,

||y(t)− z(t)||p ≤ ||y0− z0||peL(t−t0) +
σ

L

(
eL(t−t0)− 1

)
, ∀t∈ [t0, t1].

Corollary 1. For t≥ 0, x̃I(t) is continuous in (λ1(t), λ2(t)), for I ∈ {F,N}.

Proof of Corollary 1. For simplicity, let λ(t) := (λ1(t), λ2(t)). Consider two systems under information

level I starting from the same initial x̃I0 at t = 0 with arrival rates λ(t) and λ′(t). Let x̃I(t) and x̃′I(t) be

the corresponding number-in-system trajectories. We rewrite the net flow rate f Ik as a function of t, x̃I(t),

and λ(t), for k= 1,2, and denote f I := (f I1 , f
I
2 ). Then x̃I(t) and x̃′I(t) are the solutions of the following two

initial value problems, respectively:

ẏ= f I(t, y, λ(t)), y(0) = x̃I0.
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ż = f I(t, z, λ′(t)), z(0) = x̃I0.

In particular, f I(t, x,λ′(t))−f I(t, x,λ(t)) = λ′(t)−λ(t), for ∀x≥ 0. Recall that, f I is Lipschitz in x̃I(t) with

a Lipschitz constant L ≤ 2
√

2M. Applying Theorem 7 with f(t, y) = f I(t, y, λ(t)), g(t, z) = λ′(t)− λ(t), we

have:

If ||λ′(t)−λ(t)||p ≤ σ, then ||x̃′I(t)− x̃I(t)||p ≤
σ

L

(
eLt− 1

)
.

Thus, for any ε > 0 and fixed t,L, there exists σ := εL
eLt−1

such that, ||x̃′I(t)−x̃I(t)||p ≤ ε when ||λ′(t)−λ(t)||p ≤

σ. Since L is finite, and we have shown the existence and stability of periodic equilibrium for x̃I(t) and x̃′I(t),

the result follows. �

Lastly, we establish the continuity of x̃N(t,β) in β by rewriting Theorem 3.5 in Khalil (2002) as follows.

Proposition 10. If f(t, x,β) is continuous in (t, x,β) and locally Lipschitz in x on [t0, t1]×Rn×{||β−

β0||p ≤ c}. Let y(t,β0) be a solution of ẋ= f(t, x,β0) with y(t0,β0) = y0. Then, given ε > 0, there is δ > 0

such that if

||z0− y0||p < δ and ||β−β0||p < δ,

then there is a unique solution z(t,β) of ẋ= f(t, x,β) with z(t0,β) = z0, and z(t,β) satisfies

||z(t,β)− y(t,β0)||p < ε, ∀t∈ [t0, t1].

C.3. Proofs for Section 6.4

For single-class non-stationary systems, (13), (15), and (16) reduce to:

ĀI =
1

d

∫ d

0

λ(t)dt− µ

d

∫ d

0

(x̃I(t)∧ s)dt, for I ∈ {F,N}, (32)

ĀN(β) =
1

d

∫ d

0

θ

(
β

(x̃N(t)− s)+

s

)
(x̃N(t)− s)+dt, (33)

ĀF =
1

d

∫ d

0

∫ (x̃F (t)−s)+

0

θ (u/s)dudt. (34)

To facilitate the proof, we introduce the following useful lemma without a proof.

Lemma 3. Let a1, a2, b1, b2 be any real numbers, then

min{a1, a2}−min{b1, b2} ≤max{a1− b1, a2− b2}.

Then, by (32) we have

ĀN(β)− ĀF ≤ 1

d

∫ d

0

(
x̃F (t)− x̃N(t, β)

)+
dt, (35)

ĀF − ĀN(β)≤ 1

d

∫ d

0

(
x̃N(t, β)− x̃F (t)

)+
dt. (36)

We prove Propositions 3 (average number-in-system) and 4 (average system abandonment rates) by apply-

ing Lemma 3 and the following Lemma 4. Lemma 4 compares the equilibrium number-in-system processes.

Lemma 4. For single-class systems with non-stationary periodic arrivals, the equilibrium number-in-

system processes under no (N) and full (F) information compare as follows for all t≥ 0:
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1. If ρ̄≤ 1, then x̃N(t, β) = x̃F (t)≤ s.

2. If ρ≥ 1, then s≤ x̃N(t, β), s≤ x̃F (t).

3. If 1< ρ̄, then x̃N(t, β) is continuously non-increasing in β, with strict decreasing if maxt≥0 x̃
N(t,0)> s

and:

(a) If β ≥ 0.5, then x̃N(t, β)≤ x̃F (t) ∀t;

i. If maxt≥0 x̃
N(t, β)> s, then the inequality is strict ∀t,

ii. If maxt≥0 x̃
F (t)> s, then maxt≥0 x̃

N(t, β)> s.

(b) If β = 0, then x̃N(t,0)≥ x̃F (t) ∀t;

i. If maxt≥0 x̃
F (t)> s, then the inequality is strict ∀t,

ii. If maxt≥0 x̃
N(t,0)> s, then maxt≥0 x̃

F (t)> s.

Proof of Lemma 4. To facilitate the proof, we first recall the net flow rate f I(t, x) for I =N,F as follows:

fN(t, x,β) = λ(t)−µ(x(t)∧ s)− θ
(
β(x(t)− s)+

s

)
(x(t)− s)+,

fF (t, x) = λ(t)−µ(x(t)∧ s)−
∫ (x(t)−s)+

0

θ (u/s)du.

Note that for t, x≥ 0, when β ≥ 0.5, fN(t, x,β)≤ fF (t, x); when β = 0, fN(t, x,β)≥ fF (t, x). Also, by the

balance equations (32)-(34) we have

0 =

∫ d

0

fN(t, x̃N , β)dt=

∫ d

0

fF (t, x̃F )dt. (37)

1. If ρ̄≤ 1, since the arrival rate λ(t) is non-stationary, then λ(t)≤ sµ, for t≥ 0, and λ(t)< sµ for some

time interval(s) within each period. Therefore, we have 1
d

∫ d
0
λ(t)dt < sµ.

First, we show that x̃N(t, β)≤ s. Note that, there must exist t1 ∈ [0, d) such that x̃N(t1, β)< s. If otherwise,

i.e., x̃N(t, β)≥ s for t∈ [0, d), then (33) implies that

ĀN(β) =
1

d

∫ d

0

θ

(
β(x̃N(t, β)− s)+

s

)
(x̃N(t, β)− s)+dt≥ 0.

However, by (32) we have

ĀN(β) =
1

d

∫ d

0

λ(t)dt− sµ< 0,

which yields a contradiction. Therefore, we can always find such t1 with x̃N(t1, β)< s. Moreover, if x̃N(t, β)<

s and x̃N(t, β)→ s, by (7) we have

˙̃x(t) = λ(t)−µx̃(t)→ λ(t)−µs≤ 0.

That is, starting from t1, x̃N(t, β) would never exceed s for t≥ t1. Since x̃N(t, β) is a periodic equilibrium,

we must have x̃N(t, β)≤ s for t≥ 0.

By a similar analysis, we can show that x̃F (t)≤ s.

Once we obtain x̃N(t, β)≤ s, x̃F (t)≤ s, then by (33), we have ĀI = 0, for I ∈ {F,N}. By (7), x̃N(t, β) and

x̃F (t) both uniquely solves the ODE

˙̃x(t) = λ(t)−µx̃(t).

Hence, x̃N(t, β) = x̃F (t)≤ s.
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2. If ρ≥ 1, then λ(t)≥ sµ, for t≥ 0, and λ(t)> sµ for some time interval(s) within each period. Therefore,

we have 1
d

∫ d
0
λ(t)dt > sµ. By a similar analysis as we show x̃N(t, β)≤ s for ρ̄≤ 1, we can obtain that x̃N(t, β)≥

s, x̃F (t) ≥ s, and the inequality is strict for some time interval(s) within each period (i.e., max x̃I(t) > s),

using (32)-(34).

3. If 1< ρ̄, first we show that x̃N(t, β) is continuously non-increasing in β. The continuity part is given by

Proposition 10. We prove the monotonicity part by Lemma 1. Consider two systems under no information

model, one with βh and the other with βl, where βh >βl. Then, fN(t, x,βh)≤ fN(t, x,βl), for t, x≥ 0. Note

that there must exist t2 ∈ [0, d) such that x̃N(t2, β
h)≤ x̃N(t2, β

l). If otherwise, i.e., x̃N(t, βh)> x̃N(t, βl) for

t ∈ [0, d), then fN(t, x̃N(t, βh), βh) < fN(t, x̃N(t, βl), βl), for t ∈ [0, d), which contradicts to (37). Let y(t) =

x̃N(t, βh), z(t) = x̃N(t, βl), f(t, y) = fN(t, y, βh), and g(t, z) = fN(t, z, βl), then we have x̃N(t, βh)≤ x̃N(t, βl)

for t∈ [0, d) by Lemma 1. Due to the periodicity of x̃N , we have x̃N(t, βh)≤ x̃N(t, βl) for t≥ 0, i.e., x̃N(t, β)

is non-increasing in β.

We show the strict monotonicity by Lemmas 3 and 2. To do so, we first show that x̃N(t, βh) < x̃N(t, βl)

for t ≥ 0 when maxt≥0 x̃
N(t, βl) > s. We need to show the existence of t′2 ∈ [0, d) such that x̃N(t′2, β

h) <

x̃N(t′2, β
l). If otherwise, i.e., x̃N(t, βh) ≥ x̃N(t, βl) for t ∈ [0, d), then since maxt≥0 x̃

N(t, βl) > s, there must

exists an interval η2 ⊂ [0, d) such that x̃N(t, βh) ≥ x̃N(t, βl) > s for t ∈ η2. Then, fN(t, x̃N(t, βh), βh) ≤

fN(t, x̃N(t, βl), βl), for t ∈ [0, d), and the inequality is strict for t ∈ η2. This contradicts to 0 =∫ d
0
fN(t, x̃N(t, βh), βh)dt=

∫ d
0
fN(t, x̃N(t, βl), βl)dt from (37). Thus, such t′2 exists and x̃N(t, βh)< x̃N(t, βl)

for all t when maxt≥0 x̃
N(t, βl)> s by Lemma 2.

Now we show that maxt≥0 x̃
N(t,0) > s implies maxt≥0 x̃

N(t, βl) > s, for any βl > 0. Indeed, if

maxt≥0 x̃
N(t,0)> s and maxt≥0 x̃

N(t, βl)≤ s, then by (33) we have ĀN(0)> 0 and ĀN(βl) = 0. However, by

Lemma 3 and (32) we have ĀN(0)− ĀN(βl)≤ 1
d

∫ d
0

(x̃N(t, βl)− x̃N(t,0))
+
dt≤ 0, which leads to a contradic-

tion.

(a) If β ≥ 0.5, recall that fN(t, x,β)≤ fF (t, x), we show x̃N(t, β)≤ x̃F (t) using Lemma 1. Let y(t) =

x̃N(t, β), z(t) = x̃F (t), f(t, y) = fN(t, y, β), and g(t, z) = fF (t, z). Recall that fN(t, x,β)≤ fF (t, x), to apply

Lemma 1, we just need to identify a starting point t3 ∈ [0, d) such that x̃N(t3, β)≤ x̃F (t3). If on the contrary,

x̃N(t, β)> x̃F (t) for t∈ [0, d), then

fN(t, x̃N , β)− fF (t, x̃F ) = µ(x̃F (t)∧ s) +

∫ (x̃F (t)−s)+

0

θ (t/s)dt

−µ(x̃N(t, β)∧ s)− θ
(

(x̃N(t, β)− s)+

s

)
(x̃N(t, β)− s)+ < 0. (38)

However, the above inequality contradicts to the fact that 0 =
∫ d

0
fN(t, x̃N , β)dt=

∫ d
0
fF (t, x̃F )dt. Therefore,

there must exist such t3 with x̃N(t3, β)≤ x̃F (t3). Apply Lemma 1 we have x̃N(t, β)≤ x̃F (t) for t≥ t2. Since

both x̃N(t, β) and x̃F (t) are periodic with period d, we have x̃N(t, β)≤ x̃F (t) for t≥ 0.

i. Note that, (38) is strict when x̃N(t, β)≥ x̃F (t) if and only if x̃N(t, β)> s. Therefore, we can find the

t3 such that x̃N(t3, β)< x̃F (t3) by contradiction if and only if maxt≥0 x̃
N(t, β)> s, and obtain x̃N(t, β)< x̃F (t)

for t≥ 0 by applying Lemma 2 with y(t) = x̃F (t), z(t) = x̃N(t, β), f(t, z) = fF (t, x̃F ), and g(t, z) = fN(t, x̃N , β).
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ii. Now we show that maxt≥0 x̃
F (t)> s implies maxt≥0 x̃

N(t, β)> s. If not, i.e., if maxt≥0 x̃
F (t)> s

and maxt≥0 x̃
N(t, β)≤ s, then by (33) and (34) we have ĀN(β) = 0 and ĀF > 0. However, by (36), we have

ĀF − ĀN(β)≤ 1
d

∫ d
0

(x̃N(t, β)− x̃F (t))
+
dt≤ 0, which yields a contradiction.

(b) If β = 0, fN(t, x,β)≥ fF (t, x), for t, x≥ 0. By a similar analysis as we show part (a), we can obtain

the desired results. �

C.3.1. Proof of Proposition 3. Case 1 directly follows from Lemma 4.1. For Case 2, maxt≥0 x̃
N(t,0)> s

implies that maxt≥0 x̃
N(t, β)> s by Lemma 4.3. Moreover,

1. For β = 0 we have x̄N(0)> x̄F : Since maxt≥0 x̃
N(t,0)> s, this follows from Lemma 4.3.(b).

2. For β ≥ 0.5, since maxt≥0 x̃
N(t, β)> s, Lemma 4.3.(a) implies that x̄N(β)< x̄F .

3. Lemma 4.3 implies that x̄N(β) continuously and strictly decreases in β as long as maxt≥0 x̃
N(t,0)> s.

Combine the three points above, we obtain the desired results. �

C.3.2. Proof of Proposition 4. Case 1 follows from Lemma 4.1, 4.2, and (33)–(34). For Case 2, since

max
t≥0

x̃N(t,0) > s > mint≥0 x̃
N(t,1), by Lemma 4.3 we have maxt≥0 x̃

N(t, β) > s > mint≥0 x̃
N(t, β), for any

β ∈ (0,1].

1. For β = 0, ĀN(0)< ĀF : Since maxt≥0 x̃
N(t,0)> s, by Lemma 4.3.(b) we have x̃N(t,0)> x̃F (t) ∀t and

maxt≥0 x̃
F (t) > s. Then, by (35) we have ĀN(0) ≤ ĀF . Since mint≥0 x̃

N(t,0) < s implies mint≥0 x̃
F (t) < s,

there exists an interval η3 ⊆ [0, d) such that for t ∈ η3, x̃F (t) < s and x̃N(t,0) > x̃F (t). Therefore, by (32),

ĀN(0)− ĀF = µ

d

∫ d
0

(x̃F (t)− (x̃N(t,0)∧ s))dt < 0.

2. For β ≥ 0.5, ĀN(β) > ĀF : Since maxt≥0 x̃
N(t, β) > s, by Lemma 4.3.(a) we have x̃N(t, β) < x̃F (t) ∀t.

Then, by (36) we have ĀF ≤ ĀN(β). Since mint≥0 x̃
N(t, β)< s, there exists an interval η′3 ⊆ [0, d) such that for

t∈ η′3, x̃N(t, β)< s and x̃N(t, β)< x̃F . Therefore, by (32), ĀN(β)− ĀF = µ

d

∫ d
0

((x̃F (t)∧ s)− x̃N(t, β))dt > 0.

3. ĀN(β) is increasing in β: Lemma 4.3 implies that x̃N(t, β) strictly decreases in β. For βh >

βl, we have x̃N(t, βh) < x̃N(t, βl). Since mint≥0 x̃
N(t, β) < s, there exists an interval η′′3 ⊆ [0, d) such

that for t ∈ η′′3 , x̃N(t, βh) < s and x̃N(t, βh) < x̃N(t, βl). Therefore, by (32), ĀN(βh) − ĀN(βl) =
µ

d

∫ d
0

((x̃N(t, βl)∧ s)− x̃N(t, βh))dt > 0.

Combining the results above, we obtain the desired results. �

C.4. Proof for Section 6.5: Proposition 5.

In this case, the flow balance equations (13) and (14) specialize to

ĀI1 = λ1−µ1(x̄I1 ∧ s), (39)

ĀI2 = λ2−µ2

(
(s− x̄I1)+ ∧ x̄I2

)
, (40)

for I ∈ {F,N}, and (15)-(18) specialize to

ĀN1 := θ

(
β1

(x̄N1 + x̄N2 − s)+

s

)
(x̄N1 − s)+, (41)

ĀF1 :=

∫ (x̄F1 −s)
+

0

θ (u/s)du, (42)

ĀN2 := θ

(
β2

(x̄N1 + x̄N2 − s)+

s

)
(x̄N2 − (s− x̄N1 )+)+, (43)

ĀF2 :=

∫ (x̄F1 +x̄F2 −s)
+

(x̄F1 −s)
+

θ (u/s)du. (44)
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To compare the equilibrium numbers-in-system and system abandonment rates under different information

levels, we first characterize these two metrics under each of the information levels in Lemma 5. The following

lemma follows from (39)–(44).

Lemma 5. For two-priority systems with stationary arrivals, the fluid approximation (7)–(8) has the fol-

lowing equilibrium point:

1. If ρ1 ≤ 1, then x̄N1 (β) = x̄F1 = sρ1 and ĀN1 (β) = ĀF1 = 0.

(i) If ρ1 + ρ2 ≤ 1, then x̄N2 (β) = x̄F2 = sρ2 and ĀN2 (β) = ĀF2 = 0.

(ii) If ρ1 +ρ2 > 1, then x̄N1 (β) + x̄N2 (β)> s, x̄F1 + x̄F2 > s, Ā
N
2 (β) = ĀF2 = sµ2(ρ1 +ρ2− 1), x̄N2 (β) is the

unique solution of

µ2(ρ1 + ρ2− 1) = θ
(
β2(

x2

s
+ ρ1− 1)

)(x2

s
+ ρ1− 1

)
, (45)

and x̄F2 is the unique solution of

µ2(ρ1 + ρ2− 1) =

∫ x2
s

+ρ1−1

0

θ(u)du. (46)

2. If ρ1 > 1, then ĀN1 (β) = ĀF1 = λ1 − sµ1 and ĀN2 (β) = ĀF2 = λ2. Further, x̄N1 (β) > s, x̄F1 > s,

(x̄N1 (β), x̄N2 (β)) is the unique solution of the following system of equations,

µ1(ρ1− 1) = θ

(
β1

x1 +x2− s
s

)(x1

s
− 1
)
, (47)

µ2ρ2 = θ

(
β2

x1 +x2− s
s

)
x2

s
, (48)

and (x̄F1 , x̄
F
2 ) is the unique solution of the following system of equations

µ1(ρ1− 1) =

∫ x1
s
−1

0

θ(u)du, (49)

µ2ρ2 =

∫ x1
s

+
x2
s
−1

x1
s
−1

θ(u)du. (50)

Proof of Lemma 5. Divide both sides of (39) and (40) by sµ1 and sµ2, respectively, we can obtain that

ρ1 = (
x̄I1
s
∧ 1) +

ĀI1
sµ1

, (51)

ρ2 = ((1− x̄I1
s

)+ ∧ x̄
I
2

s
) +

ĀI2
sµ2

. (52)

We provide the proof for I = F , and a similar analysis yields the proof for I =N .

1. When ρ1 ≤ 1, we have x̄F1 ≤ s. If on the contrary, x̄F1 > s, then

ρ1 = (
x̄F1
s
∧ 1) +

ĀF1
sµ1

≥ x̄F1
s
> 1,

which contradicts to ρ1 ≤ 1. By (42), when x̄F1 ≤ s, ĀF1 = 0, thus x̄F1 = sρ1 by (51).

(a) When ρ1 + ρ2 ≤ 1, we show x̄F1 + x̄F2 ≤ s by contradiction. If otherwise, x̄F1 + x̄F2 > s, then x̄F2 > 0,

ĀF2 > 0, and by (52) we have

ρ2 = (1− ρ1) +
ĀF2
sµ2

> 1− ρ1,

which contradicts to ρ1 + ρ2 ≤ 1. Therefore, x̄F1 + x̄F2 ≤ s, which implies that ĀF2 = 0, and x̄F2 = sµ2.
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(b) When ρ1 + ρ2 > 1, we show x̄F1 + x̄F2 > s by contradiction. If otherwise, x̄F1 + x̄F2 ≤ s, then x̄F2 ≤

s(1− ρ1)< sρ2 and ĀF2 = 0. However, (52) implies that ρ2 =
x̄F2
s
, which leads to a contradiction. Therefore,

x̄F1 + x̄F2 > s, and x̄F2 is the solution of

ρ2 = 1− ρ1 +
ĀF2
sµ2

.

Plug in (43)–(44) into the above equation, we can obtain the desired results.

2. When ρ1 > 1, similar to the previous analysis, we can show that x̄F1 > s by contradiction. Then, (51)

and (52) can be simplified as

ρ1 = 1 +
ĀF1
sµ1

, ρ2 =
ĀF2
sµ2

.

Plug in (41)–(44) into the above equations, we can obtain the desired results. �

The average abandonment rate ranking immediately follows from Lemma 5. As for the number-in-system

rankings, part of the results in Case 1 of Proposition 5 is proved by Lemma 5. We complete the proof for

Case 1 of Proposition 5 by the continuity of x̄N(β) in β (i.e., Proposition 10) and the following lemma.

Lemma 6. If ρ1 ≤ 1, ρ1 +ρ2 > 1, then x̄N2 (β) is non-increasing in β2, x̄N2 (β1,1)< x̄F2 , and x̄N2 (β1,0)> x̄F2 .

Proof of Lemma 6. When ρ1 ≤ 1, ρ1 +ρ2 > 1, by Lemma 5, x̄N2 (β) is the unique solution of equation (45).

Differentiating both sides of (45) with respect to β2 yields:

dx̄N2 (β)

dβ2

=−
sθ′(

x̄N2 (β)

s
+ ρ1− 1)(

x̄N2 (β)

s
+ ρ1− 1)2

θ(β2(
x̄N2 (β)

s
+ ρ1− 1)) + θ′(β2(

x̄N2 (β)

s
+ ρ1− 1))β2(

x̄N2 (β)

s
+ ρ1− 1)

< 0.

Thus, x̄N2 (β) is decreasing in β2.

Next, we check the boundary case when β2 = 1. Plugging β2 = 1 in (45) we can obtain that:

µ2(ρ1 + ρ2− 1) = θ(
x̄N2 (1)

s
+ ρ1− 1)(

x̄N2 (1)

s
+ ρ1− 1).

By Case 1.(ii) of Lemma 5, we have x̄N1 (β1,1) + x̄N2 (β1,1)> s. Then, x̄N2 (β1,1)< x̄F2 since if on the contrary

x̄N2 (β1,1)≥ x̄F2 , by (46) we have

µ2(ρ1 + ρ2− 1) =

∫ x̄F2
s

+ρ1−1

0

θ(u)du≤
∫ x̄N2 (β1,1)

s
+ρ1−1

0

θ(u)du

< θ

(
x̄N2 (β1,1)

s
+ ρ1− 1

)(
x̄N2 (β1,1)

s
+ ρ1− 1

)
= µ2(ρ1 + ρ2− 1).

Thus, by contradiction, we have x̄N2 (β1,1)< x̄F2 .

Lastly, we check the other boundary case when β2 = 0. Plugging β2 = 0 in (45) we obtain that

µ2(ρ1 + ρ2− 1) = θ(0)(
x̄N2 (β1,0)

s
+ ρ1− 1).

Then, x̄N2 (β1,0)> x̄F2 since otherwise, by (46),

µ2(ρ1 + ρ2− 1) =

∫ x̄F2
s

+ρ1−1

0

θ(u)du> θ(0)(
x̄F2
s

+ ρ1− 1)≥ θ(0)(
x̄N2 (β1,0)

s
+ ρ1− 1) = µ2(ρ1 + ρ2− 1)

yields a contradiction. �

Next, we consider the case when ρ1 > 1. Case 2 of Proposition 5 is deduced by Lemma 5 and the following

lemma:
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Lemma 7. For two-priority systems with stationary arrivals, if ρ1 > 1,

1. For HP customers: for any β2, ρ2, there exists β∗1(β2) ∈ (0,0.5) such that β∗1(β2) is increasing in β2,

decreasing in ρ2, and

(i) If β1 ∈ [β∗1(β2),1], then x̄N1 (β)≤ x̄F1 .

(ii) If β1 ∈ [0, β∗1(β2)), then x̄F1 < x̄
N
1 (β).

2. For LP customers: for any β1, ρ2, there exists β∗2(β1) ∈ (0,1] such that β∗2(β1) is increasing in β1,

decreasing in ρ2, and

(i) If β2 ∈ [β∗2(β1),1], then x̄N2 (β)≤ x̄F2 .

(ii) If β2 ∈ [0, β∗2(β1)), then x̄F2 < x̄
N
2 (β).

Proof of Lemma 7. 1. We prove Part 1 of this lemma in two steps. First, we demonstrate the existence

of such β∗1(β2). Next, we prove its monotonicity with respect to the parameters.

Step 1: We prove the first step by showing that, for any fixed β2, (a) x̄N1 (β) is continuous and decreasing

in β1, (b) x̄F1 < x̄
N
1 (0, β2), and (c) x̄F1 > x̄

N
1 (0.5, β2).

(a) The continuity is given by Proposition 10. To show that x̄N1 (β) is decreasing in β1, differentiating

both sides of equations (47) and (48) with respect to β1 yields:

β1θ
′
(
β1

x̄N1 (β) + x̄N2 (β)− s
s

)(
x̄N1 (β)

s
− 1

)
d(x̄N1 (β) + x̄N2 (β))

dβ1

+ θ

(
β1

x̄N1 (β) + x̄N2 (β)− s
s

)
d(x̄N1 (β))

dβ1

=−sθ′
(
β1

x̄N1 (β) + x̄N2 (β)− s
s

)(
x̄N1 (β)

s
− 1

)(
x̄N1 (β) + x̄N2 (β)

s
− 1

)
< 0. (53)

β2θ
′
(
β2

x̄N1 (β) + x̄N2 (β)− s
s

)
x̄N2 (β)

s

d(x̄N1 (β) + x̄N2 (β))

dβ1

+ θ

(
β2

x̄N1 (β) + x̄N2 (β)− s
s

)
d(x̄N2 (β))

dβ1

= 0. (54)

By (54), there are three possible cases: (1)
d(x̄N1 (β)+x̄N2 (β))

dβ1
=

d(x̄N2 (β))

dβ1
= 0; (2)

d(x̄N1 (β)+x̄N2 (β))

dβ1
> 0,

d(x̄N2 (β))

dβ1
< 0,

and thus
d(x̄N1 (β))

dβ1
> 0; or (3)

d(x̄N1 (β)+x̄N2 (β))

dβ1
< 0,

d(x̄N2 (β))

dβ1
> 0, and thus

d(x̄N1 (β))

dβ1
< 0. Both cases (1) and (2)

are impossible as they contradict (53). Therefore, case (3) must be true. That is, x̄N1 (β) is decreasing in

β1,x̄N2 (β) is increasing in β1, and x̄N1 (β) + x̄N2 (β) is decreasing in β1.

(b) Since x̄N1 (β)> s and x̄F1 > s, plugging β1 = 0 in (47) and together with (49) we have:

µ1(ρ1− 1) = θ(0)(
x̄N1 (0, β2)

s
− 1) =

∫ x̄F1
s
−1

0

θ(u)du> θ(0)(
x̄F1
s
− 1)⇒ x̄N1 (0, β2)> x̄F1 .

(c) Plugging β1 = 0.5 in (47) we have:

θ

(
x̄N1 (0.5, β2)− s

2s

)
(
x̄N1 (0.5, β2)

s
− 1)< θ

(
x̄N1 (0.5, β2) + x̄N2 (0.5, β2)− s

2s

)
(
x̄N1 (0.5, β2)

s
− 1) = µ1(ρ1− 1).

Since θ is concave, then by (47) and (49) we have:

θ(
x̄F1 − s

2s
)(
x̄F1
s
− 1)>

∫ x̄F1
s
−1

0

θ(u)du= µ1(ρ1− 1)> θ

(
x̄N1 (0.5, β2)− s

2s

)
(
x̄N1 (0.5, β2)

s
− 1).

Therefore, x̄F1 > x̄
N
1 (0.5, β2).

Combining (a)–(c), there exists a β∗1(β2) ∈ (0,0.5) such that x̄N1 (β) = x̄F1 when β1 = β∗1(β2), x̄N1 (β) < x̄F1

when 1≥ β1 >β
∗
1(β2) and x̄F1 < x̄

N
1 (β) when 0<β1 <β

∗
1(β2).
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Step 2: β∗1(β2) is increasing in β2 and decreasing in ρ2. To facilitate the proof, we first show that x̄N1 (β)

is increasing in β2, x̄N2 (β) is decreasing in β2, and x̄N1 (β) + x̄N2 (β) is decreasing in β2. Differentiating both

sides of equations (47) and (48) with respect to β2 yields:

β1θ
′
(
β1

x̄N1 (β) + x̄N2 (β)− s
s

)
x̄N1 (β)− s

s

d(x̄N1 (β) + x̄N2 (β))

dβ2

+ θ

(
β1

x̄N1 (β) + x̄N2 (β)− s
s

)
d(x̄N1 (β))

dβ2

= 0.

(55)

β2θ
′
(
β2

x̄N1 (β) + x̄N2 (β)− s
s

)
x̄N2 (β)

s

d(x̄N1 (β) + x̄N2 (β))

dβ2

+ θ

(
β2

x̄N1 (β) + x̄N2 (β)− s
s

)
d(x̄N2 (β))

dβ2

=−sθ′
(
β2

x̄N1 (β) + x̄N2 (β)− s
s

)
x̄N2 (β)

s
(
x̄N1 (β) + x̄N2 (β)− s

s
)< 0. (56)

By (55), there are three possible cases: (1)
d(x̄N1 (β)+x̄N2 (β))

dβ2
=

d(x̄N1 (β))

dβ2
= 0; (2)

d(x̄N1 (β)+x̄N2 (β))

dβ2
> 0,

d(x̄N1 (β))

dβ2
< 0,

and thus
d(x̄N2 (β))

dβ2
> 0; or (3)

d(x̄N1 (β)+x̄N2 (β))

dβ2
< 0,

d(x̄N1 (β))

dβ2
> 0, and thus

d(x̄N2 (β))

dβ2
< 0. Both cases (1) and (2)

are impossible as they contradict (56). Therefore, case (3) must be true.

By (47) and (49), when β1 = β∗1(β2), then x̄N1 (β∗1(β2), β2) = x̄F1 =: x∗1, and

µ1(ρ1− 1) = θ

(
β∗1(β2)

x∗1 + x̄N2 (β∗1(β2), β2)− s
s

)(
x∗1
s
− 1

)
=

∫ x∗1
s
−1

0

θ(u)du.

Since x̄N2 (β) is decreasing in β2, an increase in β2 leads to a decrease in x̄N2 (β∗1(β2), β2). As x∗1 = x̄F1 is

independent of β and remains unchanged, β∗1(β2) must increase to maintain the above equation.

Similarly, when ρ2 increases, x̄N1 (β∗1(β2), β2) = x∗1 remains unchanged, x̄N2 (β∗1(β2), β2) must increase to

maintain (48), and thus β∗1(β2) must decrease to maintain (47).

2. Similar to Part 1, we prove Part 2 in two steps.

Step 1: We show the existence of β∗2(β1) by showing the following: for any fixed β1, (a) x̄N2 (β) is

decreasing in β2; (b) when β2 = 0, x̄F2 < x̄
N
2 (β1,0); and (c) when β2 = 1, (i) if β1 ≤ β∗1(β2), then x̄F2 > x̄

N
2 (β1,1);

(ii) if β1 >β
∗
1(β2), then there exist a threshold ρ∗2 such that x̄F2 < x̄

N
2 (β) if ρ2 <ρ

∗
2 and x̄F2 ≥ x̄N2 (β) if ρ2 ≥ ρ∗2.

Then, by the continuity of x̄N2 (β) on β2, such β∗2(β1) exists and when β1 > β∗1(β2) and ρ2 < ρ∗2, β∗2(β1) = 1;

otherwise, 0<β∗2(β1)< 1.

Since part (a) is already proven in step 2 of part 1, our focus shifts to parts (b) and (c).

(b) When β2 = 0, by (48) and (50) we have

µ2ρ2 = θ(0)
x̄N2 (β1,0)

s
=

∫ x̄F1
s

+
x̄F2
s
−1

x̄F1
s
−1

θ(u)du>

∫ x̄F1
s

+
x̄F2
s
−1

x̄F1
s
−1

θ(0)du= θ(0)
x̄F2
s
.

Thus, x̄N2 (β1,0)> x̄F2 .

(c.i) When β2 = 1, if β1 ≤ β∗1(β2), then by part 1 we have x̄N1 (β)≥ x̄F1 . By by (48) and (50) we have

µ2ρ2 = θ

(
x̄N1 (β1,1) + x̄N2 (β1,1)− s

s

)
x̄N2 (β1,1)

s
=

∫ x̄F1
s

+
x̄F2
s
−1

x̄F1
s
−1

θ(u)du

< θ

(
x̄F1 + x̄F2 − s

s

)
x̄F2
s
≤ θ

(
x̄N1 (β1,1) + x̄F2 − s

s

)
x̄F2
s
.

Therefore, x̄N2 (β1,1)< x̄F2 since θ is increasing.
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(c.ii) When β2 = 1, if β1 >β
∗
1(β2), then by part 1 we have x̄N1 (β1,1)< x̄F1 . Let ∆ = x̄F1 − x̄N1 (β1,1)> 0.

We will show that there exist a threshold ρ∗2 such that x̄F2 < x̄
N
2 (β) if ρ2 <ρ

∗
2 and x̄F2 ≥ x̄N2 (β) if ρ2 ≥ ρ∗2. Let

g(x) = θ(
x̄N1 (x) +x− s

s
)x−

∫ x̄F1 +x−s

x̄F1 −s
θ(
u

s
)du.

We first show that g(x) has a unique positive root in two steps. In step A, we define two alternative systems

of equations with solutions (xN1,m, x
N
2,m), (x̄N1,m, x̄

N
2,m) such that for any m, xN1,m is independent of xN2,m, x̄N1,m

is independent of x̄N2,m, and xN1,m ↑ x̄N1 (β1,1), x̄N1,m ↓ x̄N1 (β1,1) as m→∞. In step B, we identify functions

ḡm and g
m

such that ḡm and g
m

have unique positive roots for ∀m> 0, and g
m

(x) ↑ g(x), ḡm(x) ↓ g(x) as

m→∞.

Step A: Define alternative systems of equations, indexed by m where m→∞, as follows. Let x̄N1,m

and x̄N2,m denote the solutions to the following system of equations:

µ1(ρ1− 1) = θ(β1

xN1,m + ζm− s
s

)(
xN1,m
s
− 1), (57)

µ2ρ2 = θ(
xN1,m +xN2,m− s

s
)
xN2,m
s

, (58)

where we let {ζm,m ≥ 0} be a sequence converging from below to x̄N2 (β1,1) i.e., ζm ≤ x̄N2 (β1,1) and ζm ↑

x̄N2 (β1,1). Similarly, let xN1,m and xN2,m denote the solutions to the following system of equations:

µ1(ρ1− 1) = θ(β1

xN1,m + ξm− s
s

)(
xN1,m
s
− 1), (59)

µ2ρ2 = θ(
xN1,m +xN2,m− s

s
)
xN2,m
s

. (60)

where we let {ξm,m ≥ 0} be a sequence converging from above to x̄N2 (β1,1) i.e., ξm ≥ x̄N2 (β1,1) and ξm ↓

x̄N2 (β1,1). Then, by comparing equations (47), (57), and (59), and the monotonicity of θ, we must have

xN1,m ≤ x̄N1 (β1,1)≤ x̄N1,m for every m≥ 0. Moreover, by the continuity and monotonicity of θ we can obtain

that xN1,m→ x̄N1 (β1,1) and x̄N1,m→ x̄N1 (β1,1) as m→∞. To see this, suppose on the contrary that there exists

ε > 0 such that x̄N1 (β1,1)− xN1,m > ε for ∀m> 0. Then, since ξm ↓ x̄N2 (β1,1), we have ξm − x̄N2 (β1,1)< ε
2

for

m sufficiently large. Thus, xN1,m + ξm− x̄N1 (β1,1)− x̄N2 (β1,1)<− ε
2
< 0 for large enough m, and

µ1(ρ1− 1) = θ(β1

xN1,m + ξm− s
s

)(
xN1,m
s
− 1)< θ(β1

x̄N1 (β1,1) + x̄N2 (β1,1)− s
s

)(
x̄N1 (β1,1)

s
− 1) = µ1(ρ1− 1),

which yields contradiction. Therefore, xN1,m → x̄N1 (β1,1) as m→∞. Similarly, we can obtain that x̄N1,m →

x̄N1 (β1,1) as m→∞.

Step B: Define the functions ḡm and g
m

as follows:

ḡm(x) = θ(
x̄N1,m +x− s

s
)x−

∫ x̄F1 +x−s

x̄F1 −s
θ(
u

s
)du,

and

g
m

(x) = θ(
xN1,m +x− s

s
)x−

∫ x̄F1 +x−s

x̄F1 −s
θ(
u

s
)du.

It is clear that g
m

(x) ≤ g(x) ≤ ḡm(x) for ∀m > 0, x ≥ 0. Furthermore, g
m

(x)→ g(x) and ḡm(x)→ g(x) as

m→∞.
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Now we show that g
m

(x) has a unique positive root, denoted as x2
2,m, and g

m
(x) < 0 for 0 < x < x2

2,m,

g
m

(x)> 0 for x> x2
2,m.

Recall that ∆ = x̄F1 − x̄N1 (β1,1)> 0, then ∆1 := x̄F1 −xN1,m >∆> 0. Note that, g
m

(0) = 0. When 0<x≤∆1,

θ(
xN1,m +x− s

s
)x≤ θ( x̄

F
1 − s
s

)x<

∫ x̄F1 +x−s

x̄F1 −s
θ(
u

s
)du⇒ g

m
(x)< 0.

When x>∆1, since θ(·) is increasing and concave, we have

g′
m

(x) =
x

s
θ′(
xN1,m +x− s

s
) + θ(

xN1,m +x− s
s

)− θ( x̄
F
1 +x− s

s
)

>
x

s
θ′(
xN1,m +x− s

s
)− ∆1

s
θ′(
xN1,m +x− s

s
)≥ 0.

Thus g
m

(x) is increasing when x>∆1. Moreover,

g
m

(2∆1) = θ(
x̄F1 + ∆1− s

s
)2∆1−

∫ x̄F1 +2∆1−s

x̄F1 −s
θ(
u

s
)du> 0.

Therefore, there exists a unique x2
2,m > 0 such that g

m
(x2

2,m) = 0, and when 0< x< x2
2,m, g

m
(x)< 0; when

x> x2
2,m, g

m
(x)> 0.

By a similar analysis, we can show that ḡm(x) also has a unique positive root (denoted as x̄2
2,m), and

ḡm(x)< 0 for 0<x< x̄2
2,m, ḡm(x)> 0 for x> x̄2

2,m. (Note that since x̄N1,m→ x̄N1 (β1,1) as m→∞, there exist

m̄ such that when m> m̄, x̄N1,m− x̄N1 (β1,1)< 1
2
∆. Then, ∆2 := x̄F1 − x̄N1,m > 1

2
∆> 0 when m> m̄, and then

the result follows from a similar analysis.)

Both x2
2,m and x̄2

2,m converge to some point x2
2 > 0 by continuity of θ. Moreover, x2

2 is the unique positive

root of g(x). First, we must have g(x2
2) = 0. Otherwise, if g(x2

2) = δ > 0, then since x̄2
2,m → x2

2, we have

ḡm(x2
2)− ḡm(x̄2

2,m) = ḡm(x2
2)< δ for m large enough, which contradicts to the fact that g(x2

2)≤ ḡm(x2
2). Also,

x2
2 is the unique positive root. Otherwise, if there exists another positive root of g(x), denoted as x̂2

2 6= x2
2.

Then, we must have either ḡm(x̂2
2)> 0, g

m
(x̂2

2)> 0 or ḡm(x̂2
2)< 0, g

m
(x̂2

2)< 0 for m sufficiently large, and thus

contradicts with g
m

(x)≤ g(x)≤ ḡm(x). In conclusion, x2
2 is the unique positive root of g(x). Also, we can

show that g(x)< 0 for 0<x<x2
2, and g(x)> 0 for x> x2

2. Let

ρ∗2 :=
1

µ2

∫ x̄F1
s

+
x2
2
s
−1

x̄F1
s
−1

θ(u)du,

then when ρ2 < ρ∗2, we have x̄F2 < x2
2, g(x̄F2 ) < 0; when ρ2 ≥ ρ∗2, we have x̄F2 ≥ x2

2, g(x̄F2 ) ≥ 0. Then when

ρ2 <ρ
∗
2, we must have x̄F2 < x̄

N
2 (β1,1) since otherwise, if x̄F2 ≥ x̄N2 (β1,1),

µ2ρ2 = θ

(
x̄N1 (β1,1) + x̄N2 (β1,1)− s

s

)
x̄N2 (β1,1)

s
≤ θ

(
x̄N1 (β1,1) + x̄F2 − s

s

)
x̄F2
s
<

∫ x̄F1
s

+
x̄F2
s
−1

x̄F1
s
−1

θ(u)du= µ2ρ2

yields a contradiction. Thus, when ρ2 <ρ
∗
2, x̄F2 < x̄

N
2 (β1,1). Similarly, when ρ2 ≥ ρ∗2, x̄F2 ≥ x̄N2 (β1,1).

Step 2: the proof is similar to to the method used in Step 2 for Case 1; therefore, we omit it here for

brevity.

�
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C.5. Proofs for Section 6.6

In this section, we provide proofs for the comparison results for systems under two-class and non-stationary

periodic arrivals.

For the ease of the analysis for the proofs in this section, we write down the net flow rate functions as

follows:

fN1 (t, x,β) = λ1(t)−µ1(x1(t)∧ s)− θ
(
β1

(x1(t) +x2(t)− s)+

s

)
(x1(t)− s)+,

fF1 (t, x) = λ1(t)−µ1(x1(t)∧ s)−
∫ (x1(t)−s)+

0

θ (u/s)du,

fN2 (t, x,β) = λ2(t)−µ2

(
(s−x1(t))+ ∧x2(t)

)
− θ
(
β2

(x1(t) +x2(t)− s)+

s

)
(x2(t)− (s−x1(t))+)+,

fF2 (t, x) = λ2(t)−µ2

(
(s−x1(t))+ ∧x2(t)

)
−
∫ (x1(t)+x2(t)−s)+

(x1(t)−s)+

θ (u/s)du.

Also, by the balance equations (13)–(18) we have

0 =

∫ d

0

fNk (t, x̃N ,β)dt=

∫ d

0

fFk (t, x̃F )dt, for k= 1,2. (61)

In Sections C.5.1–C.5.2, we present proofs of Propositions 6–7, respectively. Proposition 8 follows from

Proposition 7, and its proof is similar to the proof of Proposition 4, so we omit it here.

C.5.1. Proof of Proposition 6. The following lemma 8 and the equations (13) and (14) imply the

rankings of the equilibrium average number-in-system and average abandonment rates shown in Proposition

6.

Lemma 8. For two-priority systems with non-stationary periodic arrivals and uniformly underloaded HP

class (i.e., ρ̄1 ≤ 1), information has the following effects on the numbers-in-system:

1. For HP customers: x̃N1 (t,β) = x̃F1 (t)≤ s for all t≥ 0.

2. For LP customers: x̃N2 (t,β) is continuously non-increasing in β2, with strict decreasing if

maxt≥0 (x̃N1 (t, (β1,0)) + x̃N2 (t, (β1,0)))> s and:

(i) If β2 ≥ 0.5, then x̃N2 (t,β)≤ x̃F2 (t) for all t≥ 0;

i. If maxt≥0 (x̃N1 (t,β) + x̃N2 (t,β))> s, then the inequality is strict for all t,

ii. If maxt≥0 (x̃F1 (t) + x̃F2 (t, ))> s, then maxt≥0 (x̃N1 (t,β) + x̃N2 (t,β))> s.

(ii) If β2 = 0, then x̃N2 (t,β)≥ x̃F2 (t) for all t≥ 0;

i. If maxt≥0 (x̃F1 (t) + x̃F2 (t))> s, then the inequality is strict for all t,

ii. If maxt≥0 (x̃N1 (t, (β1,0)) + x̃N2 (t, (β1,0)))> s, then maxt≥0 (x̃F1 (t) + x̃F2 (t))> s.

Proof of Lemma 8. When ρ̄1 ≤ 1,

1. For HP customers, the proof of x̃N1 (t,β) = x̃F1 (t) ≤ s is similar to that of case 1 in Lemma 4, so we

omit it here. Moreover, combining with (13) and (15)–(16), we have ĀN1 (β) = ĀF1 = 0 and
∫ d

0
λ1(t)dt =

µ1

∫ d
0
x̃N1 (t,β)dt= µ1

∫ d
0
x̃F1 (t)dt.

When x̃N1 (t,β) = x̃F1 (t) ≤ s, then fN1 (t, x̃N ,β) = fF1 (t, x̃F ) = λ1(t)− µ1(x̃F1 (t) ∧ s). That is, the solutions of

x̃N1 (t,β), x̃F1 (t) are given by solving (7) and independent of β, x̃N2 (t,β), and x̃F2 (t).
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2. For LP customers, we compare the two metrics between N and F by Lemmas 1 and 2. Note that, Lemmas

1 and 2 only apply to one dimensional initial value problems. Since when ρ̄1 ≤ 1, x̃N1 (t,β) is independent of

x̃N2 (t,β) and x̃N1 (t,β) = x̃F1 (t). We can convert the two dimensional initial value problems into one dimensional

ones for LP customers by rewriting fN2 (t, x,β) and fF2 (t, x) as a function of x2(t) with x1(t) = x̃F1 (t) fixed

and given by (7). Let y(t) = x̃N2 (t,β), z(t) = x̃F2 (t), f(t, y) = fN2 (t, (x̃N1 , x2),β) =: fN2 (t, x2,β), and g(t, z) =

fF2 (t, (x̃F1 , x2)) := fF2 (t, x2). The proof of x̃N2 (t, ,β) being continuously decreasing in β2 is similar to that of

case 3 in Lemma 4, so we omit it here. Note that,

fN2 (t, x2,β)− fF2 (t, x2) =

∫ (x̃F1 (t)+x2(t)−s)+

0

θ (u/s)du− θ
(
β2

(x̃F1 (t) +x2(t)− s)+

s

)
(x̃F1 (t) +x2(t)− s)+.

Thus, fN2 (t, x2,β)−fF2 (t, x2)≤ 0 when β2 ≥ 0.5 and fN2 (t, x2,β)−fF2 (t, x2)≥ 0 when β2 = 0. Using a similar

argument as in the proof of case 3 of Lemma 4, we can obtain the desired results. �

C.5.2. Proof of Proposition 7 Denote ϕ2(l(t)) as the unique solution of (7) under N with x2(t) = l(t)

as given, for any non-negative periodic function l(t). That is, ϕ2(l) solves the following ODE:

ẋ1(t) = λ1(t)−µ1(x1(t)∧ s)− θ
(
β1

(x1(t) + l(t)− s)+

s

)
(x1(t)− s)+.

Then, to facilitate the proof of Proposition 7, we introduce the following lemma. The proof of this lemma is

similar to the proof of Lemma 7, thus we omit it here.

Lemma 9. 1. ϕ2(l) is non-increasing in l(t), with strict decreasing if max
t≥0

ϕ2(l)> s.

2. If max
t≥0

ϕ2(l0)> s, for some l0(t), then max
t≥0

ϕ2(l)> s, for any l(t).

3. When β1 ≥ 0.5, ϕ2(t,β,0) :=ϕ2(0)≤ x̃F1 (t), ∀t; if max
t≥0

x̃F1 (t)> s, then the inequality is strict for all t.

Proof of Proposition 7 When ρ̄1 > 1,

1. When β1 = 0, for HP customers, x̃N1 (t,β) and fN1 (t, x,β) are independent of x̃N2 (t,β) and

fN1 (t, x1, (0, β2)) = λ1(t)−µ1(x1(t)∧ s)− θ(0)(x1(t)− s)+,

fF1 (t, x1) = λ1(t)−µ1(x1(t)∧ s)−
∫ (x1(t)−s)+

0

θ (u/s)du.

It is clear that fN1 (t, x1, (0, β2))≥ fF1 (t, x1) for any t≥ 0. By a similar argument as we prove case 3 of Lemma

4 by applying Lemmas 1 and 2, we can obtain that x̃N1 (t,β) ≥ x̃F1 (t) ∀t, with strict inequality for all t if

max
t≥0

x̃N1 (t,β)> s.

For LP customers: since x̃N1 (t, (0, β2)) and x̃F1 (t) are independent of x̃N2 (t, (0, β2)) and x̃F2 (t), we can rewrite

fN2 (t, x, (0, β2)) and fF2 (t, x) as a function of x2(t) as follows:

fN2 (t, x2, (0, β2)) =λ2(t)−µ2

(
(s− x̃N1 (t, (0, β2)))+ ∧x2(t)

)
− θ
(
β2

(x̃N1 (t, (0, β2)) +x2(t)− s)+

s

)
(x2(t)− (s− x̃N1 (t, (0, β2)))+)+,

fF2 (t, x2) =λ2(t)−µ2

(
(s− x̃F1 (t))+ ∧x2(t)

)
−
∫ (x̃F1 (t)+x2(t)−s)+

(x̃F1 (t)−s)+

θ (u/s)du.

Define the difference between these two net flow rate function as follows:

∆f2(t, x2, (0, β2)) := fN2 (t, x2, (0, β2))− fF2 (t, x2)

= µ2

(
(s− x̃F1 (t))+ ∧x2(t)

)
−µ2

(
(s− x̃N1 (t, (0, β2)))+ ∧x2(t)

)
+

∫ (x̃F1 (t)+x2(t)−s)+

(x̃F1 (t)−s)+

θ (u/s)du− θ
(
β2

(x̃N1 (t, (0, β2)) +x2(t)− s)+

s

)
(x2(t)− (s− x̃N1 (t, (0, β2)))+)+.
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(a) When β2 = 0, we show that if min
t≥0

x̃F1 (t)≥ s, then x̃F2 (t) < x̃N2 (t, (0,0)),∀t. Note that min
t≥0

x̃F1 (t)≥

s and the HP ranking result imply that x̃N1 (t, (0,0)) > x̃F1 (t) ≥ s, for all t. Therefore, for any x2(t) > 0,

∆f2(t, x2, (0, β2)) can be simplified as follows:

∆f2(t, x2, (0,0)) =

∫ x̃F1 (t)+x2(t)−s

x̃F1 (t)−s
θ (u/s)du− θ(0)x2(t)> 0.

Using a similar argument as we prove Lemma 4, we can find t4 ∈ [0, d) such that x̃F2 (t4)< x̃N2 (t4, (0,0)) by con-

tradiction via (61) with k= 2. Apply Lemma 2 with y(t) = x̃N2 (t, (0,0)), z(t) = x̃F2 (t), f(t, y) = fN2 (t, x2, (0,0)),

and g(t, z) = fF2 (t, x2), we obtain the desired result.

(b) When β2 = 1, we show that if max
t≥0

x̃F1 (t)> s and µ2 ≤ θ(0), then x̃F2 (t)> x̃N2 (t, (0,1)),∀t. We first

show that ∆f2(t, x2, (0,1)) ≤ 0, for all t. When max
t≥0

x̃F1 (t) > s, we have x̃F1 (t) < x̃N1 (t, (0,1)) for all t. For

x2(t)> 0,

i. If x̃F1 (t)< x̃N1 (t, (0,1))≤ s,

A. If x2(t)≤ s− x̃N1 (t, (0,1)), then the case is trivial with ∆f2(t, x2, (0,1)) = 0.

B. If s− x̃N1 (t, (0,1))<x2(t)≤ s− x̃F1 (t), then when µ2 ≤ θ(0),

∆f2(t, x2, (0,1)) = µ2(x̃N1 (t, (0,1)) +x2(t)− s)− θ
(
x̃N1 (t, (0,1)) +x2(t)− s

s

)
(x̃N1 (t, (0,1)) +x2(t)− s)

<µ2(x̃N1 (t, (0,1)) +x2(t)− s)− θ(0)(x̃N1 (t, (0,1)) +x2(t)− s)≤ 0.

C. If x2(t)> s− x̃F1 (t), then when µ2 ≤ θ(0),

∆f2(t, x2, (0,1)) =µ2(x̃N1 (t, (0,1))− x̃F1 (t)) +

∫ x̃F1 (t)+x2(t)−s

0

θ (u/s)du

− θ
(
x̃N1 (t, (0,1)) +x2(t)− s

s

)
(x̃N1 (t, (0,1)) +x2(t)− s)

≤µ2(x̃N1 (t, (0,1))− x̃F1 (t)) +

∫ x̃F1 (t)+x2(t)−s

0

θ (u/s)du−
∫ x̃N1 (t,(0,1))+x2(t)−s

0

θ (u/s)du

=µ2(x̃N1 (t, (0,1))− x̃F1 (t))−
∫ x̃N1 (t,(0,1))+x2(t)−s

x̃F1 (t)+x2(t)−s
θ (u/s)du

<µ2(x̃N1 (t, (0,1))− x̃F1 (t))−
∫ x̃N1 (t,(0,1))+x2(t)−s

x̃F1 (t)+x2(t)−s
θ (0)du= (µ2− θ(0))(x̃N1 (t, (0,1))− x̃F1 (t))≤ 0.

ii. When x̃F1 (t)≤ s < x̃N1 (t, (0,1)),

A. If x2(t)≤ s− x̃F1 (t), then when µ2 ≤ θ(0),

∆f2(t, x2, (0,1)) = µ2x2(t)− θ
(
x̃N1 (t, (0,1)) +x2(t)− s

s

)
x2(t)< (µ2− θ(0))x2(t)≤ 0.

B. If x2(t)> s− x̃F1 (t), then when µ2 ≤ θ(0),

∆f2(t, x2, (0,1)) =µ2(s− x̃F1 (t)) +

∫ x̃F1 (t)+x2(t)−s

0

θ (u/s)du− θ
(
x̃N1 (t, (0,1)) +x2(t)− s

s

)
x2(t)

<µ2(s− x̃F1 (t)) + θ
(
x̃F1 (t) +x2(t)− s

)
(x̃F1 (t) +x2(t)− s)− θ

(
x̃N1 (t, (0,1)) +x2(t)− s

s

)
x2(t)

<
(
µ2− θ

(
x̃F1 (t) +x2(t)− s

))
(s− x̃F1 (t))≤ 0.
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iii. When x̃F1 (t)> s, then

∆f2(t, x2, (0,1)) =

∫ x̃F1 (t)+x2(t)−s

x̃F1 (t)−s
θ (u/s)du− θ

(
x̃N1 (t, (0,1)) +x2(t)− s

s

)
x2(t)

<

∫ x̃F1 (t)+x2(t)−s

x̃F1 (t)−s
θ (u/s)du− θ

(
x̃F1 (t) +x2(t)− s

s

)
x2(t)< 0.

Thus, ∆f2(t, x2, (0,1))≤ 0, i.e., fN2 (t, x2, (0,1))≤ fF2 (t, x2), for all t, x2(t). Using a similar argument as we

prove Lemma 4, we can find t5 ∈ [0, d) such that x̃N2 (t5, (0,1))< x̃F2 (t5) by contradiction via (61) with k= 2.

Apply Lemma 2 with y(t) = x̃F2 (t), z(t) = x̃N2 (t, (0,1)), f(t, y) = fF2 (t, x2), and g(t, z) = fN2 (t, x2, (0,1)), we

obtain the desired result.

2. When β1 ≥ 0.5, for HP customers, we prove the results by Lemmas 1 and 2. To apply these Lemmas,

we need to rewrite the HP net flow rate functions f I1 as a function of x1(t) (instead of the two-dimensional

variable x(t)). By (7) and (9) we know that, x̃F1 (t) (so as fF1 (t, x)) is independent of x̃F2 (t), while x̃N1 (t,β) (so

as fN1 (t, x,β)) depends on x̃N2 (t,β). Therefore, we can directly rewrite fF1 as a function of x1(t). For I =N ,

denote ϕ1(l,β) as the unique solution of (8) under N with x1(t) = l(t) as given for any non-negative periodic

function l(t) with period d. Then, we can rewrite fN1 as a function of x1(t) with x2(t,β) = ϕ1(x1,β) ≥ 0.

Specifically, f I1 can be rewritten as follows:

fN1 (t, x1,β) = λ1(t)−µ1(x1(t)∧ s)− θ
(
β1

(x1(t) +ϕ1(x1(t),β)− s)+

s

)
(x1(t)− s)+,

fF1 (t, x1) = λ1(t)−µ1(x1(t)∧ s)−
∫ (x1(t)−s)+

0

θ (u/s)du.

Since θ is increasing and concave, ϕ1(x1,β)≥ 0, it is obvious that fN1 (t,β)≤ fF1 (t, x1) for any t≥ 0 when

β1 ≥ 0.5. Using a similar argument as we prove case 3 of Lemma 4 by applying Lemmas 1 and 2, we can

obtain that x̃N1 (t,β)≤ x̃F1 (t) ∀t, and x̄N1 (β)< x̄F1 if maxt≥0 x̃
F
1 (t)> s.

For LP customers: similar to how we handle the HP class, we can rewrite fN2 (t, x,β) as a function of x2(t)

with x1(t) = ϕ2(x2(t)), where ϕ2(l(t)) denote the unique solution of (7) under N with x2(t) = l(t) as given,

for any non-negative periodic function l(t). Specifically,

fN2 (t, x2,β) = λ2(t)−µ2

(
(s−ϕ2(x2(t)))+ ∧x2(t)

)
−θ
(
β2

(ϕ2(x2(t)) +x2(t)− s)+

s

)
(x2(t)−(s−ϕ2(x2(t)))+)+.

We can also rewrite fF2 (t, x) as a function of x2(t) with x1(t) = x̃F1 (t) and define ∆f2(t, x2,β) := fN2 (t, x2,β)−

fF2 (t, x2) like we did in part 1 of this proof.

(a) When β2 = 0, if maxt≥0 x̃
F
1 (t) > s and µ2 ≤ θ(0), then x̃F2 (t) < x̃N2 (t,β) ∀t. Note that, Lemma 9

implies that ϕ2(x2(t))≤ ϕ2(0)< x̃F1 (t),∀t, x2(t)> 0. Using this set of inequalities and a similar analysis as

Case 1.(b), we can obtain the desired results by Lemma 2 with y(t) = x̃N2 (t, (β1,0)), z(t) = x̃F2 (t), f(t, y) =

fN2 (t, x2, (β1,0)), and g(t, z) = fF2 (t, x2).

(b) When β2 = 1,

i. If min
t≥0

x̃N1 (t,β) ≥ s, we show that there exists a threshold ρ̃1
2 such that if ρ̄2 < ρ̃1

2, then x̃F2 (t) <

x̃N2 (t,β),∀t. Let δ1(t) := x̃F1 (t)−ϕ2(t,β,0) and δ1 := mint δ1(t). Since ϕ2(x2(t))<ϕ2(0)< x̃F1 (t),∀t, we have

x̃F1 (t) > ϕ2(x2(t)) + δ1,∀t. We prove this result by three steps: (1) When x̃F2 (t) < δ1, for t ≥ 0, we show
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that x̃F2 (t)< x̃N2 (t, (β1,1)) by Lemma 2. (2) For the special case when the LP arrival rate is stationary with

ρ2(t) = ρ̄2, for t ≥ 0, denote the LP periodic equilibrium of the corresponding system as x̂F2 (t). Then, we

show that there exists a threshold ρ̃1
2 for the LP load such that x̂F2 (t)< δ1 if ρ̄2 < ρ̃

1
2. (3) When the LP arrival

rate is non-stationary with maximum LP load ρ̄2, we show that x̃F2 (t) ≤ x̂F2 (t) by Lemma 1. Therefore, if

ρ̄2 < ρ̃
1
2, then x̃F2 (t)< δ1, which further implies the desired result.

Step 1: Let y(t) = x̃N2 (t, (β1,1)), z(t) = x̃F2 (t), f(t, z) = fN2 (t, x̃F2 (t), (β1,1)), and g(t, z) =

fF2 (t, x̃F2 (t)). To apply Lemma 2, we need to show as follows that fF2 (t, x̃F2 (t))≤ fN2 (t, x̃F2 (t), (β1,1)), for t≥ 0,

and there exists t6 such that x̃F2 (t6)< x̃N2 (t6, (β1,1)).

When min
t≥0

x̃F1 (t)>min
t≥0

x̃N1 (t,β)≥ s, β2 = 1, and x̃F2 (t)< δ1 < x̃
F
1 (t)−ϕ2(x̃F2 (t)), we have

∆f2(t, x̃F2 (t), (β1,1)) =

∫ x̃F1 (t)+x̃F2 (t)−s

x̃F1 (t)−s
θ (u/s)du− θ

(
ϕ2(x̃F2 (t)) + x̃F2 (t)− s

s

)
x̃F2 (t)(t)

>θ

(
x̃F1 (t)− s

s

)
x̃F2 (t)− θ

(
x̃F1 (t)− s

s

)
x̃F2 (t) = 0.

Next, we show by contradiction the existence of t6. If on the contrary, x̃F2 (t)≥ x̃N2 (t, (β1,1)), for all t, then

ϕ2(x̃N2 (t, (β1,1))) + x̃N2 (t, (β1,1))<ϕ2(t, (β1,1),0) + x̃F2 (t)≤ϕ2(t, (β1,1),0) + δ1 ≤ x̃F1 (t), and

fF2 (t, x̃F2 )− fN2 (t, x̃N2 , (β1,1)) = θ

(
(ϕ2(x̃N2 (t, (β1,1))) + x̃N2 (t, (β1,1))− s)

s

)
x̃N2 (t, (β1,1))−

∫ (x̃F1 (t)+x̃F2 (t)−s)

(x̃F1 (t)−s)
θ (u/s)du

≤ θ
(

(x̃F1 (t)− s)
s

)
x̃F2 (t)−

∫ (x̃F1 (t)+x̃F2 (t)−s)

(x̃F1 (t)−s)
θ (u/s)du< 0,

which contradicts to (61).

Step 2: Since x̄F1 (t)> s, when the LP arrival rate is stationary, by (8), x̂F2 (t) is the unique periodic

solution of

ẋF2 = ρ̄2µ2s−
∫ (x̃F1 (t)+xF2 (t)−s)

(x̃F1 (t)−s)
θ (u/s)du := f̂F2 (t, xF2 (t)).

By the nature of periodic equilibrium we have

ρ̄2µ2s=
1

d

∫ d

0

∫ (x̃F1 (t)+x̂F2 (t)−s)

(x̃F1 (t)−s)
θ (u/s)dudt. (62)

Thus, when ρ̄2→ 0, we must have x̂F2 (t)→ 0 by continuity. Therefore, for any δ1 > 0, there exists ρ̃1
2 such

that if ρ̄2 < ρ̃
1
2, we have x̂F2 (t)< δ1 for t≥ 0.

Step 3: When the LP arrival rate is non-stationary with maximum LP load ρ̄2, we prove x̃F2 (t)≤

x̂F2 (t) by Lemma 1 with y(t) = x̃F2 (t), z(t) = x̂F2 (t), f(t, y) = fF2 (t, y), and g(t, z) = f̂F2 (t, z). It is clear that

fF2 (t, y)≤ f̂F2 (t, z) since fF2 (t, x2)− f̂F2 (t, x2) = λ2(t)− ρ̄2µ2s≤ 0. And we can show the existence of t11 ∈ [0, d)

such that x̃F2 (t11)≤ x̂F2 (t11) by contradiction using (62) and
∫ d

0
fF2 (t, x̃F2 (t)) = 0 as follows:

1

d

∫ d

0

∫ (x̃F1 (t)+x̃F2 (t)−s)

(x̃F1 (t)−s)
θ (u/s)dudt=

1

d

∫ d

0

λ2(t)dt < ρ̄2µ2s=
1

d

∫ d

0

∫ (x̃F1 (t)+x̂F2 (t)−s)

(x̃F1 (t)−s)
θ (u/s)dudt.

ii. If min
t≥0

x̃N1 (t,β) ≥ s, or max
t≥0

x̃N1 (t,β) > s and µ2 ≥ θ(∞), there exists a threshold ρ̃2
2 such that if

ρ
2
> ρ̃2

2, then x̃F2 (t) > x̃N2 (t,β),∀t. By Lemma 9, when max
t≥0

x̃N1 (t,β) > s, ϕ2(∞) < ϕ2(x2(t)) < x̃F1 (t), for

x2(t) > 0. Let δ2(t) := x̃F1 (t) − ϕ2(∞) > 0 and δ̄2 := maxt δ2(t). We prove this result by three steps: (1)
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When x̃N2 (t, (β1,1)) > 2δ̄2, we show that x̃F2 (t) > x̃N2 (t, (β1,1)) using Lemma 2. (2) For the special case

when the LP arrival rate is stationary with ρ2(t) = ρ
2
, for t≥ 0, denote the LP periodic equilibrium of the

corresponding system as x̆F2 (t). Then, we show that there exists a threshold ρ̃2
2 for the LP load such that

x̆N2 (t, (β1,1))> 2δ̄2 if ρ
2
> ρ̃2

2. (3) When the LP arrival rate is non-stationary with minimum LP load ρ
2
, we

show that x̃N2 (t, (β1,1))≥ x̆N2 (t, (β1,1)). Therefore, if ρ
2
> ρ̃2

2, then x̃N2 (t, (β1,1))> 2δ̄2, which further implies

the desired result. The proofs of Steps 2 and 3 are similar to our proofs of Steps 2 and 3 for Case 2.(b).i,

thus we omit it here for brevity.

Step 1: Let y(t) = x̃F2 (t), z(t) = x̃N2 (t, (β1,1)), f(t, z) = fF2 (t, x̃N2 (t, (β1,1))), and g(t, z) =

fN2 (t, x̃N2 (t, (β1,1))). To apply Lemma 2, we need to show that when x̃N2 (t, (β1,1))≥ 2δ̄2, min
t≥0

x̃N1 (t,β)≥ s, or

max
t≥0

x̃N1 (t,β)> s and µ2 ≥ θ(∞), the following two conditions are satisfied: fF2 (t, x̃N2 )≥ fN2 (t, x̃N2 , (β1,1)) and

there exists t7 ∈ [0, d) such that x̃F2 (t7)> x̃N2 (t7, (β1,1)). For x̃N2 (t, (β1,1))> 0,

• When ϕ2(x̃N2 (t, (β1,1)))< x̃F1 (t)≤ s,
— If x̃N2 (t, (β1,1))≤ s− x̃F1 (t), then ∆f2(t, x̃N2 , (β1,1)) = 0 is trivial.

— If s− x̃F1 (t)< x̃N2 (t, (β1,1))≤ s−ϕ2(x̃N2 (t, (β1,1))), then when µ2 ≥ θ(∞),

∆f2(t, x̃N2 , (β1,1)) =

∫ (x̃F1 (t)+x̃N2 (t,(β1,1))−s)

0

θ (u/s)du−µ2(x̃F1 (t) + x̃N2 (t, (β1,1))− s)< 0.

— If x̃N2 (t, (β1,1))> s−ϕ2(x̃N2 (t, (β1,1))), then when µ2 ≥ θ(∞),

∆f2(t, x̃N2 , (β1,1)) =µ2(ϕ2(x̃N2 (t, (β1,1)))− x̃F1 (t)) +

∫ (x̃F1 (t)+x̃N2 (t,(β1,1))−s)

0

θ (u/s)du

− θ
(

(ϕ2(x̃N2 (t, (β1,1))) + x̃N2 (t, (β1,1))− s)
s

)
(ϕ2(x̃N2 (t, (β1,1))) + x̃N2 (t, (β1,1))− s)

<µ2(ϕ2(x̃N2 (t, (β1,1)))− x̃F1 (t))

+

∫ (x̃F1 (t)+x̃N2 (t,(β1,1))−s)

0

θ (u/s)du−
∫ ϕ2(x̃N2 (t,(β1,1)))+x̃N2 (t,(β1,1))−s

0

θ (u/s)du

=−µ2(x̃F1 (t)−ϕ2(x̃N2 (t, (β1,1)))) +

∫ (x̃F1 (t)+x̃N2 (t,(β1,1))−s)

ϕ2(x̃N2 (t,(β1,1)))+x̃N2 (t,(β1,1))−s
θ (u/s)du

≤(θ(∞)−µ2)(x̃F1 (t)−ϕ2(x̃N2 (t, (β1,1))))≤ 0.

• When ϕ2(x̃N2 (t, (β1,1)))≤ s < x̃F1 (t),

— If x̃N2 (t, (β1,1))≤ s−ϕ2(x̃N2 (t, (β1,1))), then when µ2 ≥ θ(∞),

∆f2(t, x̃N2 , (β1,1)) =

∫ (x̃F1 (t)+x̃N2 (t,(β1,1))−s)

(x̃F1 (t)−s)
θ (u/s)du−µ2x̃

N
2 (t, (β1,1))< (θ(∞)−µ2)x̃N2 (t, (β1,1))≤ 0.

— If x̃N2 (t, (β1,1))> s−ϕ2(x̃N2 (t, (β1,1))), then when µ2 ≥ θ(∞) and x̃N2 (t, (β1,1))≥ 2δ̄2,

∆f2(t, x̃N2 , (β1,1)) =−µ2(s−ϕ2(x̃N2 (t, (β1,1)))) +

∫ (x̃F1 (t)+x̃N2 (t,(β1,1))−s)

(x̃F1 (t)−s)
θ (u/s)du

− θ
(

(ϕ2(x̃N2 (t, (β1,1))) + x̃N2 (t, (β1,1))− s)
s

)
(ϕ2(x̃N2 (t, (β1,1))) + x̃N2 (t, (β1,1))− s)

<(θ(∞)−µ2)(s−ϕ2(x̃N2 (t, (β1,1))))

+

∫ (x̃F1 (t)+x̃N2 (t,(β1,1))−s)

(x̃F1 (t)−s)
θ (u/s)du− θ

(
(ϕ2(x̃N2 (t, (β1,1))) + x̃N2 (t, (β1,1))− s)

s

)
x̃N2 (t, (β1,1))

<

(
θ

(
(x̃F1 (t) + 1

2
x̃N2 (t, (β1,1))− s)
s

)
− θ
(

(ϕ2(x̃N2 (t, (β1,1))) + x̃N2 (t, (β1,1))− s)
s

))
x̃N2 (t, (β1,1))≤ 0.

Note that x̃N2 (t, (β1,1))≥ 2δ̄2 > 2(x̃F1 (t)−ϕ2(x̃N2 (t, (β1,1)))) implies the last inequality.
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Table 4 Comparison of the simulation- and fluid-based average system abandonment rankings (µ1 = µ2 = 1,

s= 20, θ(x) = 5− 4e−x, and λk(t) = ρkµks(1− 0.8 sin (πt/12))).

ρ1 ρ2 Class (k)
simulation-based ranking fluid-based ranking

ĀNk ĀFk ĀNk ĀFk
1.2 0.1 1 8.3821 8.3358 8.1141 8.0954

1.2 0.8 1 8.4313 8.3415 8.1318 8.0954

1.2 1.2 1 8.4391 8.3413 8.1354 8.0745

1.2 0.1 2 1.6026 1.6186 1.6409 1.6471

1.2 0.8 2 13.3838 13.4917 13.9541 13.9748

1.2 1.2 2 20.4645 20.6164 21.3479 21.9546

• When ϕ2(x̃N2 (t, (β1,1)))> s, since x̃N2 (t, (β1,1))≥ 2δ̄2,

∆f2(t, x̃N2 , (β1,1)) =

∫ (x̃F1 (t)+x̃N2 (t,(β1,1))−s)

(x̃F1 (t)−s)
θ (u/s)du− θ

(
(ϕ2(x̃N2 (t, (β1,1))) + x̃N2 (t, (β1,1))− s)

s

)
x̃N2 (t, (β1,1))

<

(
θ

(
(x̃F1 (t) + 1

2
x̃N2 (t, (β1,1))− s)
s

)
− θ
(

(ϕ2(x̃N2 (t, (β1,1))) + x̃N2 (t, (β1,1))− s)
s

))
x̃N2 (t, (β1,1))≤ 0.

To summarize, we show that ∆f2(t, x̃N2 , (β1,1)) < 0 when x̃N2 (t, (β1,1)) ≥ 2δ̄2, min
t≥0

x̃N1 (t,β) ≥ s, or

max
t≥0

x̃N1 (t,β)> s and µ2 ≥ θ(∞).

The existence of t7 can be shown in a similar analysis as we prove Step 1 of Case 2.(b).i, therefore we omit

it here for brevity. �

Appendix D: Supplementary Numerical Results for Section 7.2

In this section, we provide supplementary numerical results for the robustness check of our fluid approxima-

tions for finite stochastic systems.

In Section 7.2, we have verified the robustness of our fluid-based number-in-system ranking results for

moderately-sized systems, i.e., s= 20. Here, we consider numerical examples with alternative system sizes,

i.e., s= 10,50.

In Figures 12 and 13, we plot 95% confidence intervals for the expected number-in-system process, under

each information level, along with their corresponding time-dependent fluid limits, at equilibrium, over one

period, for small (s= 10) and large (s= 50) server sizes. Other parameters are consistent with our numerical

examples in Figures 10 and 11.

As can be seen in Figures 12 and 13, the fluid approximations are effective to describe performance in

a stochastic system even with small-sized system (s = 10), and is pretty precise with large-sized system

(s = 50). And the rankings of the simulated average number-in-system stochastic processes are consistent

with the fluid-based ranking, at each point in time, for both system sizes.

As for the robustness of the fluid-based average system abandonment rate rankings for the stochastic

systems, we estimate the expected average system abandonment rates of the stochastic systems for each

information level and obtain their rankings (statistically significant at 95% confidence level) using simulation.

The results are shown in Table 4.
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(a) HP customers, ρ1 = ρ2 = 0.8 (b) LP customers, ρ1 = ρ2 = 0.8

(c) HP customers, ρ1 = ρ2 = 1.5 (d) LP customers, ρ1 = ρ2 = 1.5

Figure 12 Comparisons of the number-in-system trajectories under different information levels for small size

simulated stochastic systems and the fluid models (s= 10, µ1 = µ2 = 1,

θ(x) = 5− 4e−x, λk(t) = ρkµks(1− 0.8 sin (πt/12))).

Table 4 shows that full information yields lower HP average system abandonment and higher LP average

system abandonment than no information in both simulation- and fluid-based systems, across all three cases

where LP load ranges from low to high. In conclusion, Table 4 indicates that our fluid-based average system

abandonment rankings are valid for small-sized stochastic systems.
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(a) HP customers, ρ1 = ρ2 = 0.8 (b) LP customers, ρ1 = ρ2 = 0.8

(c) HP customers, ρ1 = ρ2 = 1.5 (d) LP customers, ρ1 = ρ2 = 1.5

Figure 13 Comparisons of the number-in-system trajectories under different information designs for large size

simulated stochastic systems and the fluid models (s= 50, µ1 = µ2 = 1,

θ(x) = 5− 4e−x, λk(t) = ρkµks(1− 0.8 sin (πt/12))).
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